Virtual Library

Start Your Search

Shinichi Toyooka

Moderator of

  • +

    OA 07 - Biomarker for Lung Cancer (ID 659)

    • Event: WCLC 2017
    • Type: Oral
    • Track: Biology/Pathology
    • Presentations: 10
    • +

      OA 07.01 - A Prospective Study of Perioperative Rapid Clearance of Circulating Tumor DNA in R0 Resected Non-Small Cell Lung Cancer Patients (ID 8044)

      15:45 - 15:55  |  Presenting Author(s): Kezhong Chen  |  Author(s): H. Zhao, F. Yang, T. Wang, L.T. Wang, J. Wang

      • Abstract
      • Presentation
      • Slides

      Background:
      Our previous study has shown the feasibility and clinical application of circulating tumor DNA(ctDNA) detection in stage I-IIIA surgical non-small cell lung cancer (NSCLC) patients(NCT02645318). The aim of this prospective study is to investigate the perioerative changes of ct DNA in surgical NSCLC patients.

      Method:
      From 11/2016, suspected lung cancer patients who proposed radical tumor resection were enrolled prospectively. Six precise time points plasma samples were obtained before surgery(time A) and after tumor resection (time B to F, 5min-3days) before discharge. A series driver mutations were quantitatively evaluated by multiplex assay based on circulating single-molecule amplification and resequencing technology (cSMART). Positive plasma mutations were validated in tumor tissue by targeted sequencing. Normal tissue and white blood cell DNA were used as controls. Study protocol (NCT02965391) was approved by Medical Ethics Committee (2016PHB156-01).

      Result:
      The consort diagram was shown in Fig 1. Thirteen R0 resected patients met the inclusion criteria. Fifteen genetic alterations were identified including four EGFR, seven TP53, two PIK3CA, one KRAS mutation and one ALK rearrangement. Ten (76.9%) cases had a gradually decrease of mutation ratio as time went on, and the average mutation ratio was 3.32%, 2.68%, 1.38%, 0.07%, 0.04% and 0 at the time-points A to F, respectively. Eight patients’ and three patients’ mutation ratio in time point D and time point E were not decease to zero, respectively. Advanced stage patients were more likely to have a positive ctDNA in time D and E, although there was no significant difference. All the mutations’ ratio dropped to zero in time F. No patients’ had positive ctDNA one month after surgery.Figure 1



      Conclusion:
      This is the first prospective study to evaluate the dynamic changes of ctDNA in surgical lung cancer patients. ctDNA has a rapid clearance in R0 resected lung cancer patients, but is not completely regression until 72h after surgery.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      OA 07.02 - Characteristics of Lung Cancer Cell-Free Tumor DNA (CfDNA) Shedding and Correlation with Tumor Burden as Measured by RECIST (ID 9663)

      15:55 - 16:05  |  Presenting Author(s): Vincent K Lam  |  Author(s): L. Li, J. Wang, H.T. Tran, W. Rinsurongkawong, R.B. Lanman, J. Lewis, J. Roth, Stephen Swisher, Vassiliki A Papadimitrakopoulou, Jack Lee, Jianjun Zhang, John V Heymach

      • Abstract
      • Presentation
      • Slides

      Background:
      cfDNA is a promising biomarker for early recurrence detection and disease monitoring in the NSCLC curative setting. However, less is known about cfDNA shedding characteristics and correlation with tumor burden in advanced NSCLC.

      Method:
      We reviewed cfDNA results of NSCLC patients tested at our institution between November 2015 and December 2016 with Guardant 360, a comprehensive cfDNA assay that detects genomic alterations in 70-73 cancer genes. 141 cases with evaluable imaging were selected for this analysis, enriching for EGFR and KRAS mutated cases to facilitate comparisons of major genomic subtypes (Table 1). Tumor burden was approximated using the sum of longest diameters (SLD), per RECIST v1.1.

      Result:
      There was a statistically significant correlation of moderate strength between cfDNA maximum variant allele frequency (VAF) detected and SLD (Spearman’s rho = 0.35, p < 0.001). This correlation was strongest in KRAS mutant cases (rho = 0.52, p = 0.001) and weakest in EGFR mutated tumors (rho = 0.21, p < 0.24). Multi-variate regression that included stage, histology, and mutation status confirmed the predictive value of cfDNA VAF for SLD (p = 0.03). TP53 mutants had higher cfDNA VAF (Wilcox p < 0.001), even after accounting for SLD. Increased cfDNA VAF was also seen with EGFR mutants and patients with visceral metastasis, though possibly confounded by concomitant EGFR amplification and increased tumor burden, respectively. CNS metastasis was not associated with differential cfDNA shedding. Figure 1



      Conclusion:
      In this primarily metastatic cohort, cfDNA VAF correlated with radiographic assessment of tumor burden by RECIST. This correlation was partially mediated by the presence of key driver mutations. TP53 and EGFR mutant tumors and the presence of visceral metastasis are associated with higher cfDNA VAF. These findings have potential implications for the use of cfDNA in advanced-stage NSCLC disease monitoring, where RECIST is more clinically applicable than formal volumetrics.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      OA 07.03 - Circulating Tumor DNA Mutant Allele Frequency and Tumor Burden as Biomarkers for Response to Immune Checkpoint Blockade (ID 9606)

      16:05 - 16:15  |  Presenting Author(s): Young Kwang Chae  |  Author(s): A.A. Davis, Sarita Agte, A. Pan, N. Mohindra, V. Villaflor, F.J. Giles

      • Abstract
      • Presentation
      • Slides

      Background:
      Identifying biomarkers to select patients who respond to immune checkpoint blockade in non-small cell lung cancer (NSCLC) remains a challenge. Cell-free circulating tumor DNA (ctDNA) has emerged as a non-invasive, quantitative method of monitoring genomic alterations in the peripheral blood. We evaluated the clinical utility of ctDNA mutant allele frequency (MAF) and tumor burden based on imaging as biomarkers for response to immune checkpoint blockade in NSCLC.

      Method:
      From a cohort of 136 patients with ctDNA samples, 20 patients were retrospectively identified with ctDNA testing before initiation of anti-PD-1/PD-L1 treatment or within 90 days of therapy initiation. ctDNA testing was performed by Guardant360 (Guardant Health, Redwood City, CA). MAF of the dominant clone was identified quantitatively for each patient. In addition, baseline tumor burden was estimated using RECIST version 1.1. MAF and tumor burden were correlated with progression free survival (PFS) and overall survival (OS). Logistic regression of response rate (RR) and clinical benefit rate (CBR) was also performed.

      Result:
      Higher median ctDNA MAF was correlated with significantly shorter PFS and OS (hazard ratio (HR) 3.4, p=0.03 and HR 10.4, p=0.03, respectively) (Figure 1). There was no significant association between tumor burden estimation and PFS and OS. However, tumor burden was significantly correlated with MAF (r=0.58, p=0.007). MAF and tumor burden estimation did not correlate with RR or CBR in this small sample. Figure 1



      Conclusion:
      ctDNA MAF appears to be a promising, non-invasive, prognostic biomarker for response to immune checkpoint blockade in NSCLC with higher MAF associated with shorter PFS and OS. ctDNA MAF may also serve as a surrogate for tumor burden. Prospective studies with serial ctDNA sampling are necessary to further validate these findings.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      OA 07.03a - Impact of Tumor Mutation Burden on the Efficacy of Nivolumab or Nivolumab + Ipilimumab in Small Cell Lung Cancer: An Exploratory Analysis of CheckMate 032 (ID 11063)

      16:15 - 16:25  |  Presenting Author(s): Naiyer Rizvi  |  Author(s): S. Antonia, M.K. Callahan, M.M. Awad, Emiliano Calvo, P.A. Ascierto, A. Atmaca, Fred R. Hirsch, G. Selvaggi, J.D. Szustakowski, H. Chang, W.J. Geese, M.D. Hellmann

      • Abstract
      • Presentation
      • Slides

      Background:
      CheckMate 032 is a phase 1/2 clinical trial evaluating nivolumab ± ipilimumab in solid tumors, including small cell lung cancer (SCLC). Initial results have shown durable responses and encouraging survival, with benefit seen regardless of PD-L1 status. There is a need for improved biomarkers in SCLC. SCLC is nearly universally found in smokers and is characterized by high tumor mutation burden (TMB). The association of high TMB and clinical benefit from nivolumab ± ipilimumab in patients with SCLC was evaluated in an exploratory analysis of CheckMate 032.

      Method:
      CheckMate 032 evaluated nivolumab ± ipilimumab in non-randomized and randomized cohorts, which were pooled for this analysis. Whole exome sequencing (WES) was conducted on tumor and matched blood samples. TMB was defined as the total number of nonsynonymous somatic mutations. For the exploratory analyses, patients were equally divided into TMB tertiles (defined as low, medium, and high). Overall survival (OS) and progression-free survival (PFS) were estimated using Kaplan-Meier methods.

      Result:
      Among 401 patients in the intent-to-treat (ITT) population, 211 (53%) had an evaluable TMB result for these analyses (86% of the 246 patients with tissue available to attempt WES). Baseline characteristics and outcomes were similar between the ITT and TMB-evaluable populations. In TMB-evaluable patients treated with nivolumab (n=133), objective response rate (ORR), PFS, and OS were improved in the high TMB cohort vs the medium and low TMB cohorts (ORR: 21.3% vs 6.8% and 4.8%; 1-year PFS: 21.2% vs 3.1% and not calculable; 1-year OS: 35.2% vs 26.0% and 22.1%). Similar benefits were seen in TMB-evaluable patients treated with nivolumab + ipilimumab (n=78) in the high vs medium and low TMB cohorts (ORR: 46.2% vs 16.0% and 22.2%; 1-year PFS: 30.0% vs 8.0% and 6.2%; 1-year OS 62.4% vs 19.6% and 23.4%).

      Conclusion:
      In patients with SCLC, efficacy with nivolumab ± ipilimumab was enhanced in those with high TMB. Among patients with high TMB, ORR and 1-year OS rates were approximately double with nivolumab + ipilimumab compared with nivolumab monotherapy. TMB has a potential role as a biomarker in lung cancer. Optimization of TMB cutoff and prospective investigation are warranted.Acknowledgements: All authors contributed to and approved the abstract; writing and editorial assistance was provided by Beth Burke, PhD, CMPP, of Evidence Scientific Solutions, funded by Bristol-Myers Squibb.Trial Registration: clinicaltrials.gov, NCT01928394

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      OA 07.04 - Discussant - OA 07.01, OA 07.02, OA 07.03, OA 07.03a (ID 10766)

      16:25 - 16:40  |  Presenting Author(s): Balazs Halmos

      • Abstract
      • Presentation
      • Slides

      Abstract not provided

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      OA 07.05 - Serial Biopsies in Patients with EGFR-Mutant NSCLC Highlight the Spatial and Temporal Heterogeneity of Resistance Mechanisms (ID 10181)

      16:40 - 16:50  |  Presenting Author(s): Zofia Piotrowska  |  Author(s): K. Stirling, R. Heist, M.J. Mooradian, C. Rizzo, S.R. Digumarthy, M. Lanuti, F. Fintelmann, I.T. Lennes, A.F. Farago, Justin F Gainor, C.G. Azzoli, J. Temel, Mari Mino-Kenudson, D. Dias-Santagata, R. Corcoran, Alice Shaw, A.N. Hata, Lecia V Sequist

      • Abstract
      • Presentation
      • Slides

      Background:
      Resistance to EGFR tyrosine kinase inhibitors (TKIs) limits treatment outcomes among patients with EGFR-mutant NSCLC. Resistance mechanisms have previously been conceptualized as binary “positive/negative” variables, but emerging evidence suggests resistant cancers are heterogeneous, and subclones may be appreciated through multiple biopsies.

      Method:
      We retrospectively analyzed 221 EGFR mutant pts at MGH who had >1 biopsy after progression on their initial EGFR inhibitor. Data on acquired resistance (AR) mechanisms observed at each biopsy, adverse events, and treatment were collected.

      Result:
      Among 221 pts with a total of 355 post-AR tissue biopsies, median age was 59 (range, 28-88), 69% were female, 64% had EGFR del19, 33% L858R and 3% other activating mutations. Median number of biopsies per patient was 1 (range, 1-4). Biopsies at first resistance to EGFR TKI showed 61% T790M, 5% MET amplification (amp), 3% SCLC transformation, 2% acquired PIK3CA and 1% acquired BRAF mutations. 83 pts had two biopsies during their post-resistance course; 43/83 (52%) had heterogeneity between biopsy 1 and 2. In particular, 20% “lost” T790M, while 11% “gained” T790M. Among 17 pts who lost T790M, 3 gained a separate resistance mechanism, including MET amp and BRAF V600E. In some cases, synchronous biopsies identified spatial heterogeneity. For example, an osimertinib-resistant patient had a T790M/C797S lung nodule, while a concurrent mediastinal lymph node was wild-type at both loci (both sites retained the activating EGFR mutation). Similarly, another osimertinib-resistant patient with MET amp in a pleural effusion cell block had a lung nodule biopsy which lacked MET amp; the patient was treated with combination EGFR and MET inhibitors with a partial response. Additional details regarding concurrent liquid biopsies, treatment histories and clinical outcomes will be presented.

      Conclusion:
      In this large cohort of EGFR mutant NSCLC patients, we frequently observed variations in resistance mechanisms in patients with > 1 post-AR biopsy. Our data highlights the heterogeneity of resistant cancers and the limitations of a single biopsy in fully capturing the spectrum of resistance mechanisms in each patient. Serial biopsies or non-invasive methods may be required to characterize resistance and identify potential therapeutic targets.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      OA 07.06 - Innate Genetic Evolution of Lung Cancers and Spatial Heterogeneity: Analysis of Treatment-Naïve Lesions (ID 9102)

      16:50 - 17:00  |  Presenting Author(s): Kenichi Suda  |  Author(s): J. Kim, I. Murakami, L. Rozeboom, C.J. Rivard, Tetsuya Mitsudomi, A. Tan, Fred R. Hirsch

      • Abstract
      • Presentation
      • Slides

      Background:
      Cancers are composed of heterogeneous cell populations in terms of somatic mutations and dysregulated signaling pathways. We hypothesized that such heterogeneity, together with selection advantages conferred by distinct microenvironments, may contribute to tumor evolution and metastatic patterns.

      Method:
      We collected tumor specimens and non-cancer tissues from treatment-naïve autopsied patients to study the innate genetic evolution and spatial heterogeneity by RNA-sequencing. Our cohort consists of four NSCLC patients and one SCLC patient. Each patient had 5 – 9 primary and metastatic lesions, including metastases to lung, liver, colon (distant metastases), visceral or parietal pleura (pleural metastases), and intra- or extra-thoracic lymph nodes (lymph nodes metastases). Comprehensive data analyses were performed, including gene expression / pathway analyses and fusions / somatic variants detection.

      Result:
      Global unsupervised clustering analysis of expression data reveals that lesions from each patient clustered together, indicating that tumor cells themselves have greater effects on the gene expression signature than the microenvironment. Pathway analyses in individual patients revealed that the primary lesion is distinct from metastatic lesions in NSCLCs (Figure-left). For the SCLC patient, distant metastases and lymph node metastases clustered according to different parts of the primary tumor (Figure-right). Pathway analyses also revealed that cell-cycle, DNA replication, RNA polymerase, and spliceosome-related pathways are upregulated, while immune-related pathways are downregulated in all metastatic patterns compared with primary lesions. In particular, we observed that multiple immune-related pathways, related to NK cells and T-cells, were downregulated in pleural metastases. Detection of fusions / somatic variants identified the KIF5B-RET fusion as a founder mutation in a never-smoking adenocarcinoma patient. Notch signaling was upregulated, in this patient, in all metastatic lesions but not the primary site.Figure 1



      Conclusion:
      These data demonstrate the similarity and the heterogeneity between primary and metastatic lesions in lung cancer patients. In addition, we identified the correlation between tumor heterogeneity and metastatic patterns.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      OA 07.07 - Inhibition of the Novel Oncogene ELF3 Abolishes Lung Adenocarcinoma Growth (ID 8408)

      17:00 - 17:10  |  Presenting Author(s): Katey S.S. Enfield  |  Author(s): Erin Anne Marshall, K. Ng, C. Anderson, S. Rahmati, Stephen Lam, C.E. Macaulay, W.W. Lockwood, A. Karsan, I. Jurisica, W.L. Lam

      • Abstract
      • Presentation
      • Slides

      Background:
      Oncogenic reactivation of transcription factors involved in fetal lung development is integral to lung adenocarcinoma (LUAD) biology, as observed with TITF1/NKX2-1 and the ETS transcription factors ETV4 and ETV5. ELF3 is an uncharacterized ETS family member implicated in fetal lung development encoded at 1q32.1. Interestingly, chromosome 1q is a region of frequent gain in LUAD that lacks a bona fide oncogene. We hypothesize that ELF3 is a novel oncogene and putative therapeutic target in LUAD.

      Method:
      Multiple independent datasets encompassing 1,685 clinical samples of LUAD, lung squamous cell carcinoma (LUSC), small cell lung cancer, and non-malignant lung tissues were analyzed to establish the frequency of ELF3 overexpression and underlying genetic mechanisms of selection. Protein-protein interaction (PPI) networks were constructed around ELF3, and integrated pathway analysis was performed to decipher the signaling network disruptions resulting from ELF3 overexpression. Isogenic cell lines were established to assess the ability of ELF3 to regulate oncogenic phenotypes. The effect of ELF3 loss on tumour growth was assessed in xenograft mouse models.

      Result:
      Strong ELF3 overexpression was frequently observed in LUAD (>2-fold: TCGA 40% p=1.5E-07; BCCA 73% p=1.6E-21), but was not observed in other lung cancer subtypes. Similarly, high ELF3 expression was significantly associated with poor overall survival of LUAD patients (all Stages p<0.0001, Stage I p<0.0001), but not LUSC patients (p>0.05). These clinical associations prompted further examination of ELF3 in the LUAD subtype of lung cancer. While mutations in ELF3 were rare, up to 80% of LUAD patients harboured focal amplification, DNA gain, and/or promoter hypomethylation at the ELF3 locus, which resulted in transcript overexpression. ELF3 overexpression induces remodeling of 23 direct PPI networks, resulting in loss of interaction with proteins such as MYC and GLI2, while forming new interactions with NKX2-1, HOXA5 and CDK8, among others. This reprogramming of PPI networks affects multiple oncogenic pathways including MAPK, TGF-beta and WNT. ELF3 knockdown in LUAD cell lines resulted in significantly reduced proliferation, viability, and anchorage-independent growth, demonstrating ELF3 has oncogenic properties. Loss of ELF3 abolished the ability of LUAD cells to establish tumours in xenograft mouse models, demonstrating the requirement of ELF3 expression for tumour growth.

      Conclusion:
      ELF3 is a novel LUAD oncogene encoded on chromosome 1q, activated in up to 73% of patients, and strongly associated with poor overall survival. As ELF3 inhibition abolished tumour growth, therapeutic targeting of ELF3 could benefit LUAD patient outcome.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      OA 07.08 - Clinical Potential of Sputum in Detecting Driver Mutations in Patients with Non-Small Cell Lung Cancer: A Preliminary Study (ID 7540)

      17:10 - 17:20  |  Presenting Author(s): Vanessa Karen De Sá  |  Author(s): Helano Carioca Freitas, G.T. Torrezan, E.H.R. Olivieri, C.A. De Paula, D.M. Carraro, V.K. De Sa

      • Abstract
      • Presentation
      • Slides

      Background:
      The incidence of lung cancer has significantly increased over the last century and remains the most common cause of cancer deaths worldwide. Our better understanding of the tumor microenvironment and the systemic actions of tumors, combined with the recent advent of the liquid biopsy, may allow molecular diagnostics to be done with non-invasive method for detection and monitoring of patient tumors. Sputum has been the target for the discovery of non-invasive biomarkers for lung cancer because it contains airway epithelial cells, and molecular alterations identified in sputum are most likely to reflect tumor-associated changes. Since January of 2017, sputum samples have been prospectively collected at the time of diagnosis for future evaluation of actionable mutations in EGFR, KRAS, BRAF and NRAS in patients with non-small cell lung cancer in our center. Currently, from 20 sputum samples already collected, 5 are confirmed for driver mutations (one in KRAS and 4 in EGFR) in tissue biopsy, with 2 of the samples being positive for T790M in circulating tumor DNA (ctDNA) isolated from plasma. Our aim is to evaluate whether sputum may be representative in the detection of these mutations.

      Method:
      DNA was extracted from sputum using QIAamp DNA midi kit (Qiagen). Tumor somatic mutations were investigated by target-sequencing using a custom Ion Ampliseq™ Panel (ThermoFisher Scientific), containing hotspot regions of 14 genes frequently mutated in solid tumors (including EGFR). Multiplex amplification was performed with 10 ng of DNA using Multiplex PCR Master Mix (Qiagen) and high-throughput sequencing was performed using Ion Proton platform. Somatic mutations were considered if the variant allele was present in more than 0.5% of the reads, considering a minimum coverage depth of 20,000X. A medium coverage of 172,524X was obtained in the five samples.

      Result:
      We detected mutations in 3 out of 5 sputum samples of patients with previously known driver mutations (two exon 19 deletions and one exon 18 G719A in EGFR). The highest frequency was detected in the only patient with spontaneous sputum collection (23%).The other two mutations were detected in low frequencies (0.5 and 0.6%) in samples derived from sputum induction. We found T790M in one patient positive for T790M in ctDNA isolated from plasma.

      Conclusion:
      These preliminary findings indicate that driver mutations can be identified in sputum routinely obtained from sputum samples. Thus, the ability to examine sputum might provide a convenient source of sampling and may be adapted for future large-scale screening.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      OA 07.09 - Discussant - OA 07.05, OA 07.06, OA 07.07, OA 07.08 (ID 10767)

      17:20 - 17:35  |  Presenting Author(s): Iver Petersen

      • Abstract
      • Presentation
      • Slides

      Abstract not provided

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.



Author of

  • +

    MA 07 - ALK, ROS and HER2 (ID 673)

    • Event: WCLC 2017
    • Type: Mini Oral
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      MA 07.11 - A Phase II Study of Trastuzumab Emtansine in HER2-positive Non-Small-Cell-Lung Cancer (ID 8453)

      16:55 - 17:00  |  Author(s): Shinichi Toyooka

      • Abstract
      • Presentation
      • Slides

      Background:
      Trastuzumab emtansine (T-DM1), an anti-HER2 antibody conjugated with vinca-alkaloid, has been approved for clinical use in HER2-positive breast cancer. HER2-alterations are detected even in non-small-cell lung cancer (NSCLC). We have launched a phase II trial of T-DM1 monotherapy for patients with HER2-positive lung cancer.

      Method:
      Eligible patients had pathologically diagnosed NSCLC with documented HER2-positivity (immunohistochemistry [IHC] 3+, both IHC 2+ and fluorescence in situ hybridization [FISH] +, or exon 20 insertion mutation) and were previously treated with standard chemotherapy. Thirty patients would receive T-DM1 3.6 mg/kg every 3 weeks. The primary endpoint is the overall response rate (ORR) per RECIST v1.1.

      Result:
      This study was early terminated due to the limited efficacy, leading that only 16 patients were registered. The demographics of the 15 evaluable patients were as follows: age (median; 67, range: 45-77), sex (male; 47%), performance status (0-1; 80%), histology (non-squamous; 100%), HER2 status (IHC3+; 33%, IHC2+/FISH; 20%, and mutation; 47%) and number of prior chemotherapeutic regimens (median; 4, range: 1-7). Of 15 patients, one, who possessed HER2 mutation achieved a partial response, resulting in ORR of 6.7%. None of the 15 patients experienced treatment-related deaths. Survival data would be presented at the meeting.

      Conclusion:
      T-DM1 has a limited efficacy for HER2-positive NSCLCs in our cohort. Additional molecular approaches are warranted for the precision medicine in HER2-positive tumors. UMIN registration number 000019446.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA 13 - New Insights of Diagnosis and Update of Treatment (ID 674)

    • Event: WCLC 2017
    • Type: Mini Oral
    • Track: Early Stage NSCLC
    • Presentations: 1
    • +

      MA 13.05 - Discussant - MA 13.01, MA 13.02, MA 13.03, MA 13.04 (ID 10784)

      16:05 - 16:20  |  Presenting Author(s): Shinichi Toyooka

      • Abstract
      • Presentation
      • Slides

      Abstract not provided

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P2.16 - Surgery (ID 717)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Surgery
    • Presentations: 1
    • +

      P2.16-026 - Surgical Treatment for Metastatic Lung Tumors from Various Sarcomas (ID 10470)

      09:30 - 09:30  |  Author(s): Shinichi Toyooka

      • Abstract

      Background:
      Sarcomas are known to be malignant and aggressive tumors, and often develop multiple pulmonary metastasis. Although systemic therapy is a treatment of choice for metastatic lung tumors, effective treatments have not yet been established. Surgical resection for metastatic lung tumors is a therapeutic option to control the disease, while it is not a curative therapy.

      Method:
      Between 2006 and 2014, 129 sarcoma patients who underwent pulmonary metastasectomy in Okayama University Hospital were retrospectively reviewed. In total, 229 pulmonary resections were performed. We analyzed the following factors: age, sex, site of primary lesion, histology, operative procedures, size of the largest lesions resected, maximum number of the resected tumors, postoperative complications, and survival rate.

      Result:
      In total, 939 metastatic nodules were resected. Average number of tumors per intervention was 4.1 (range 1-19). These sarcoma patients consisted of 31 males and 98 females, and their average age was 53.6 years (range 14-80 years). Leiomyosarcoma was the most common histological subtype (n = 72, 55.8%) and uterus was the most common location of the primary disease (n = 55, 42.6%). Operative procedures were composed of 173 partial resections, 31 segmentectomies with or without partial resections, 24 lobectomies with or without partial resections, and 1 basal segmental auto-transplantation after pneumonectomy. The postoperative complications were limited, showing that pulmonary metastasectomies for sarcomas are acceptable. Overall 3-year survival after the first pulmonary metastasectomy was 49.5%, and the survival was significantly better for the group with disease-free interval of more than 2 years or the size of the largest resected lesion less than 30 mm.

      Conclusion:
      Surgical resections for metastatic lung tumors of sarcoma were performed without major complication, indicating acceptable feasibility. If disease-free interval is more than 2 years and the size of the largest resected lesion is less than 30 mm, patients may maximally benefit from surgical resection.