Virtual Library
Start Your Search
S. Taverna
Author of
-
+
P3.01 - Advanced NSCLC (ID 621)
- Event: WCLC 2017
- Type: Poster Session with Presenters Present
- Track: Advanced NSCLC
- Presentations: 1
- Moderators:
- Coordinates: 10/18/2017, 09:30 - 16:00, Exhibit Hall (Hall B + C)
-
+
P3.01-088c - Exosomal Amphiregulin Induce Osteoclastogenesis Through Osteoclast Differentiation Mediated by EGFR Pathway (ID 9342)
09:30 - 09:30 | Author(s): S. Taverna
- Abstract
Background:
Bone metastasis is the most frequent complication in NSCLC resulting in osteolytic lesions. During the bone metastasis, there is an increase on the osteoclastogenesis in detriment of the bone formation processes. Epidermal growth factor receptor (EGFR) pathway is constitutively activated in NSCLC and it is known that EGFR binds Amphiregulin (AREG) that is overexpressed in several cancers such as colon, breast and lung. Moreover, its levels in plasma derived from NSCLC patients correlate with poor prognosis. AREG was recently described as a signaling molecule in exosomes derived from cancer cell lines. Exosomes have a key role in the cell-cell communication and they were indicated as important actors in metastatic niche preparation. For this reason, in the present work, we hypothesize a role of AREG carried by exosomes derived from NSCLC cells and plasma of NSCLC patients, in osteoclast differentiation.
Method:
Exosomes were isolated from CRL-2868 cells, by ultracentrifugation and characterized by Western Blotting (WB) and electron microscopy analysis. AREG expression and EGFR phosphorylation was evaluated by WB in, CRL-2868 cells, exosomes and exosomes isolated from plasma derived from NSCLC patients. The osteoclasts morphology was assessed by confocal microscopy and RANKL, MMP9 and TRAP mRNA expression were measured by Real time PCR and RANKL and MMP9 secretion was evaluated by ELISA. The human biological material used in this publication was provided by Biobank@UZA (Antwerp, Belgium; ID: BE71030031000) and Banco de muestras biologicas Centro de investigacion Medica Aplicada (CIMA) Universidad de Navarra.
Result:
Exosomes derived from NSCLC plasmacontains AREG that induces EGFR pathway activation in pre-osteoclasts increasing the expression of RANKL which is able to induce the expression of proteolytic enzymes, MMP9 and TRAP, well-known markers of osteoclastogenesis. AREG function has been confirmed by loss and gain experiments with recombinant and neutralazing AREG, furthermore, knockdown-AREG exosomes do not induce osteoclast differentiation. To conclude, exosomes released in plasma of NCSLC patients, contain AREG, and induce osteoclasts differentiation of human primary osteoclasts.
Conclusion:
Exosomal AREG induces EGFR pathway activation that can induce RANKL expression that in turn, increases the expression of MMP9 and TRAP initiating an osteolytic bone metastasis.