Virtual Library

Start Your Search

D.A. Rowbotham



Author of

  • +

    P2.02 - Biology/Pathology (ID 616)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      P2.02-022 - Alternative Regulation of Cancer-Associated Genes through Modulation of Long Non-Coding RNAs (ID 8658)

      09:30 - 09:30  |  Author(s): D.A. Rowbotham

      • Abstract
      • Slides

      Background:
      Uncovering novel mechanisms of cancer-gene regulation may reveal new actionable targets to direct the treatment of patients who do not harbour targetable molecular drivers of lung cancer. Long non-coding RNAs (lncRNAs), are a class of transcripts that hold an emerging role in cell biology, particularly in gene regulation. These genes have since been implicated in cancer-associated phenotypes, and may represent attractive therapeutic intervention points; however, prediction of downstream regulatory targets of lncRNAs has been impeded due to their complex tertiary structure. Recently, a subset of lncRNAs has been shown to regulate the expression of neighbouring protein-coding genes in cis. Here we take a novel approach to identify lncRNAs deregulated in lung adenocarcinoma (LUAD) and examine their roles in the expression modulation of their cancer-associated protein-coding cis-partner genes.

      Method:
      RNA-sequencing was performed on 36 LUAD tumour samples with matched adjacent non-malignant tissue obtained via microdissection to 90% purity. Significantly deregulated lncRNAs and neighbouring protein-coding genes were identified by comparison of matched tumour and non-malignant normalized read counts (Wilcoxon Signed-Rank Test, FDR-BH<0.05). Fifty LUAD tumours with paired normal tissue from The Cancer Genome Atlas (TCGA) were used to validate these findings. Cox-Proportional Hazard analysis was performed on both datasets to assess survival associations of significantly deregulated lncRNAs.

      Result:
      Our approach revealed greater than 500 lncRNAs that were significantly deregulated between LUAD and matched normal tissues. Many of these lncRNAs have neighbouring protein-coding genes that also display deregulated expression patterns. Of particular interest are the protein-coding-target genes that have been previously implicated in cancer, including OIP5, which is involved in chromatin segregation, as well as HMGA1, which contributes to cell transformation and metastasis. In both of these cases, the neighbouring lncRNA is significantly underexpressed while the protein-coding gene is significantly overexpressed, suggesting a negative regulatory function of the lncRNA. Moreover, survival analyses revealed that patients with high expression of either OIP5 or HMGA1 had significantly shorter overall survival. Strikingly, patients with low expression of the lncRNA near OIP5 also displayed poorer overall survival, illustrating the clinical opportunity that these genes present.

      Conclusion:
      Our results highlight the landscape of lncRNA deregulation in LUAD and uncover a role of these non-coding transcripts in the cis-regulation of neighbouring protein-coding genes, many of which have been described in cancer and predict patient survival. Further characterization of this alternative lncRNA-mediated cancer-gene regulatory mechanism may reveal novel therapeutic targets that may improve treatment for LUAD patients without well defined molecular drivers.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.