Virtual Library
Start Your Search
G. Otterson
Author of
-
+
MA 06 - Lung Cancer Biology I (ID 660)
- Event: WCLC 2017
- Type: Mini Oral
- Track: Biology/Pathology
- Presentations: 1
- Moderators:N. Motoi, Keith M Kerr
- Coordinates: 10/16/2017, 15:45 - 17:30, Room 501
-
+
MA 06.08 - Lung Cancer Patients with Germline Mutation: A Retrospective Study (ID 8670)
16:30 - 16:35 | Author(s): G. Otterson
- Abstract
- Presentation
Background:
Genetic testing for alterations of oncogenic driver genes has become essential and standard in clinical practice. Germline mutations predisposing to lung cancer are rare, but there have been reports regarding germline mutations in EGFR, HER2, BRCA2, CDKN2A, BAP1, SFTPA2, and PARK2. Next generation sequencing is being introduced to clinical practice of lung cancer, enabling investigation of multiple oncogenic driver genes simultaneously. In addition, liquid biopsy, which analyzes cell free DNA in blood, increases the opportunity to detect germline mutations in lung cancer patients. We examined the frequency and characteristics of lung cancer patients with germline mutations.
Method:
Between February 2012 and January 2017, 3,869 patients with a diagnosis of lung cancer were seen by Division of Medical Oncology in Ohio State University. Of these, seven were found to have germline mutations. The patient characteristics and treatment outcomes were retrospectively investigated.
Result:
Table 1 shows characteristics and treatment outcomes of the seven lung cancer patients with germline mutations. Median age was 50 (range, 34-72). Three had BRCA2 germline mutations, two had germline TP53 mutations(of which one patient also had a PARK2 mutation), one had a BRCA1 mutation, and one had an EGFR mutation. Testing for other oncogenic drivers were done in five patients, and interestingly, four patients had oncogenic driver mutations. The frequency of detecting germline mutations in lung cancer patients has been increasing in recent years, but is often unrecognized by providers. In our series, one patient was found to have a germline mutation by Foundation ONE, and another was found to have a germline mutation by Foundation ACT.Year Age Sex Histology Stage Smoking hisory Other cancer Germline mutation Other somatic gene alteration Targeted therapy Respnse 2014 37 F Ad IA former smoker (2py) No BRCA2 not evaluated - - 2014 72 F Ad IV former smoker breast cancer, lung cancer EGFR T790M EGFR G719S rociletinib SD 2015 69 F Ad IIIA former smoker breast cancer, uterine cancer BRCA2 EGFR L858R - - 2015 50 F SCLC IA never smoker breast cancer TP53 Y236*, PARK2 Q347* FGFR2 amplification - - 2016 34 F Ad IV former smoker No BRCA2 L3061* MET 3028+2T>C crizotinib PR 2016 44 F Ad IV never smoker orbital rhabdomyosarcoma TP53 ALK fusion crizotinib PR 2017 62 F SCLC IV former smoker breast cancer BRCA1 not evaluated - -
Conclusion:
Introduction of next generation sequencing technology and liquid biopsies to clinical practice can raise the probability of detecting germline mutations in lung cancer patients. Clinicians should be alert to the potential existence and importance of germline mutations in their lung cancer patients.
Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.
-
+
OA 18 - Lung Cancer Pathology and Genetics (ID 687)
- Event: WCLC 2017
- Type: Oral
- Track: Biology/Pathology
- Presentations: 1
- Moderators:George R. Simon, Yoon-La Choi
- Coordinates: 10/18/2017, 14:30 - 16:15, Room 316
-
+
OA 18.02 - The Landscape of Alteration of DNA Integrity-Related Genes and Their Association with Tumor Mutation Burden in Non-Small Cell Lung Cancer (ID 10440)
14:40 - 14:50 | Author(s): G. Otterson
- Abstract
- Presentation
Background:
A key hallmark of cancer cells is the ability to proliferate despite remarkable levels of DNA damage. Non-small cell lung cancers (NSCLC) tend to have high mutation rates, frequently related to smoking. While many genes have been functionally implicated in maintaining the integrity of the genome, for the majority of these genes there remains a lack of evidence of a direct relationship between loss-of-function and increased tumor mutation burden (TMB). Recent studies suggested an association between high TMB and cancer response to immunotherapies. The aim of this study was to comprehensively analyze the relationship between DNA integrity-related genes and TMB in NSCLC.
Method:
Whole exome DNA sequencing and copy number array data were downloaded from TCGA lung adenocarcinoma (LAC) and squamous cell carcinoma (LSCC) datasets, and mutation burdens were calculated for each of 974 tumors. We identified 150 genes across 7 pathways and 9 groups known to be involved in repairing or compensating for DNA damage. To test each gene, tumors were placed into one of three groups according to the gene’s mutation status; wild-type, homozygous deleted or mutated with loss-of-function, and non-synonymous missense mutated. We then compared the average mutation burden in each of these groups. This workflow was then repeated with pathways instead of genes.
Result:
Our comprehensive analysis demonstrates a landscape of significant alterations to genes and pathways responsible for maintaining DNA integrity in NSCLC. A loss of function mutation or homozygous deletion in at least one signature gene occurred in 49% of LAC and 59% of LSCC. We searched for genes in this signature associated with significantly higher tumor mutation burdens (one sided t-test, p < 0.05) and found 4 in LAC (RRM1 1%, TP53 17%, FANCE 1%, and MLH1 2%) and 8 in LSCC (NEIL1 0.5%, POLE 4%, POLG 0.5%, FANCE 3%, GEN1 1%, MLH1 4%, MSH6 1%, and RPA1 2%) datasets. Of note, tumors with nonsense mutations, indels, or homozygous deletions in the FANCE or MLH1 genes have significantly higher TMB in both LAC and LSCC. We repeat this process to find pathways significantly associated with increased TMB.
Conclusion:
We present a comprehensive study of the association between genes responsible for maintaining DNA integrity and TMB in NSCLC. These findings are important to the search for potential predictive biomarkers for immunotherapy.
Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.
-
+
P3.03 - Chemotherapy/Targeted Therapy (ID 719)
- Event: WCLC 2017
- Type: Poster Session with Presenters Present
- Track: Chemotherapy/Targeted Therapy
- Presentations: 1
- Moderators:
- Coordinates: 10/18/2017, 09:30 - 16:00, Exhibit Hall (Hall B + C)
-
+
P3.03-007 - LCMC2: Expanded Profiling of Lung Adenocarcinomas Identifies ROS1 and RET Rearrangements and TP53 Mutations as a Negative Prognostic Factor (ID 8338)
09:30 - 09:30 | Author(s): G. Otterson
- Abstract
Background:
The Lung Cancers Mutation Consortium (LCMC) is a multi-institutional effort where 16 sites identify oncogenic drivers and pool data to assess the impact of targeted therapies in patients with lung adenocarcinomas. We now report the results of the second patient cohort (LCMC2) with an expanded multiplex molecular panel to include RET and ROS1 and tumor suppressors.
Method:
904 patients with centrally confirmed stage IV lung adenocarcinomas who were candidates for therapy had at least one of 14 oncogenic drivers assessed in a CLIA-compliant laboratory using genotyping, FISH, massively parallel sequencing (NGS), and immunohistochemistry (IHC) analyses.
Result:
Among 423 patients tested for all 14 targets, we found a driver in 65%. Mutated KRAS was found in 31%, sensitizing EGFR in 14%, MET amplification in 5%, ALK rearrangements in 4%, BRAF V600E in 3%, and HER2 in 3%. Rearrangements in RET and ROS1 were each found in 2% (CI 1 to 3%). Using IHC, PTEN loss was found in 8% (CI 6 to 11%) and MET expression in 58% (CI 55 to 61%). Use of targeted therapies in patients with EGFR, HER2, or BRAF mutations, ALK, ROS1, or RET rearrangements, and MET amplification was associated with a gain in overall survival of 1.5 years relative to those with the same drivers not receiving targeted therapy and a gain of 1 year relative to those without an actionable driver. Current and former cigarette smokers derived a survival benefit from targeted therapies similar to never smokers (p=0.975). Among 154 patients who had all drivers assessed and NGS testing in addition, any TP53 mutation was associated with poorer survival among those with EGFR, ALK, or ROS1 (p=0.014). STK11 was detected in 11%, all in patients with KRAS mutations.
Conclusion:
Using an expanded testing panel, LCMC2 demonstrates the survival benefit of matching targeted treatments to oncogenic drivers in patients with lung adenocarcinomas, identifies additional prognostic factors, and supports the performance of multiplex molecular testing on specimens from all individuals with lung adenocarcinomas irrespective of clinical characteristics. We detected either MET amplifications or HER2 mutations in 7%, together more than the 4% with ALK. A targeted drug is available in the United States for 35% of patients with lung adenocarcinomas. The routine use of massively parallel sequencing (NGS) detects both targetable drivers and tumor suppressor genes that have significance for therapy selection and prognosis. Supported by Free to Breathe