Virtual Library
Start Your Search
B.R. Jennings
Author of
-
+
P1.14 - Radiotherapy (ID 700)
- Event: WCLC 2017
- Type: Poster Session with Presenters Present
- Track: Radiotherapy
- Presentations: 1
- Moderators:
- Coordinates: 10/16/2017, 09:30 - 16:00, Exhibit Hall (Hall B + C)
-
+
P1.14-017 - Impact of Systematic EBUS-TBNA Mediastinal Staging on Radical Radiotherapy Planning in NSCLC (ID 8497)
09:30 - 09:30 | Author(s): B.R. Jennings
- Abstract
Background:
Radical radiotherapy often relies solely on radiological imaging to determine treatment volumes. Systematic mediastinal staging with endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) may identify PET-occult sites of mediastinal disease, or demonstrate benign causes for PET-positive LN. This study evaluated 1) Involved nodal coverage 2) Doses to organs-at-risk when planned based on PET-CT and EBUS-TBNA and 3) Incident dose to mediastinal nodes between 3D-CRT and Intensity-Modulated-Radiotherapy (IMRT).
Method:
Radical radiotherapy plans (60Gy/30 fractions) were created for patients with stage change following EBUS-TBNA from a prospective clinical trial. We compared lung Normal-Tissue-Complication-Probability (NTCP, pneumonitis), oesophageal and heart dose for planning to targets based on PET-CT versus PET-CT+EBUS-TBNA. The incidental dose to PET-negative/EBUS-TBNA-positive nodes from 3DCRT and IMRT was evaluated using volume receiving 35Gy as a surrogate for control of sub-clinical disease (Kepka, IJROBP, 73(5) 2009).
Result:
Of 30 patients enrolled, four were upstaged by EBUS-TBNA; these patients had a significant geographic miss of nodal GTV when planned to PET-positive nodes only (Figure 1). When planned based on PET-CT alone, the incidental dose to PET-negative/EBUS-TBNA-positive nodes was higher with IMRT for two patients (v35Gy increased by 17% & 6%; Figure 1a&b) and lower with IMRT (v35Gy reduced by 16% and 6%; Figure 1c&d) for two, dependent on nodal position relative to the primary. Six patients had negative pathology for PET avid nodal stations; Inclusion of EBUS-negative, PET-positive nodes resulted in an average increased lung NTCP of 5% (range 1%-13%), mean oesophagus dose of 13Gy (range 4-23Gy) and mean heart dose of 4Gy (range -0.1-11Gy) over plans based on EBUS-positive nodes alone. Figure 1
Conclusion:
Systematic EBUS-TBNA has the potential to improve loco-regional control and limit the probability of lung and heart toxicity. The incidental dose to adjacent tissue is inherently related to involved node/tumour position and not solely dictated by the radiation delivery technique.