Virtual Library
Start Your Search
Michael Chung
Author of
-
+
P2.16 - Surgery (ID 717)
- Event: WCLC 2017
- Type: Poster Session with Presenters Present
- Track: Surgery
- Presentations: 1
- Moderators:
- Coordinates: 10/17/2017, 09:30 - 16:00, Exhibit Hall (Hall B + C)
-
+
P2.16-023 - Changes of the Pulmonary Artery After Resection of Stage I Lung Cancer (ID 10238)
09:30 - 09:30 | Presenting Author(s): Michael Chung
- Abstract
Background:
Radiologists focus on the anatomic changes in the lung itself when interpreting postoperative surveillance CT scans, but the anatomic and physiologic effects of lung resection on the other organs of the thorax, specifically the pulmonary artery (PA), have not been well studied. Potential variations in PA size over time have been recognized as predictors of post-surgical complications and the development of pulmonary hypertension.
Method:
The International Early Lung Cancer Action Program (I-ELCAP) database was queried for lung cancer patients who underwent lobectomy and had both preoperative and postoperative CT imaging. Case-specific details were previously recorded in the database as per I-ELCAP protocol. All surgeries were performed by general thoracic surgeons. All CT imaging for each patient was reviewed by a fellowship-trained chest radiologist. Figure 1
Result:
Among the 142 subjects who underwent lobectomy, the median follow-up time from the pre-surgical CT to the last reviewable CT was 53.2 months (IQR: 27.9-100.4 months). The average increase in the size of the main pulmonary artery (mPA) was 1.5 mm (19.9 mm to 21.4 mm, P < 0.0001). There was also a significant increase between the pre-surgical CT and the initial postoperative CT which was on average 12.6 months later from 19.9 mm to 20.7 mm (P = 0.0002). Considering patients with and without CT evidence of emphysema, the 82 with emphysema had a smaller average change of the main PA between the pre-surgical and the last reviewable CT than the 60 without emphysema (1.0 mm vs. 1.8 mm, P = 0.08).
Conclusion:
Patients undergoing lobectomy appear to be at increased risk for enlargement of their pulmonary artery diameters after surgery. These results show that a focus on all the organs in the thorax, not just the lungs themselves, is important when evaluating postoperative lung resection CTs.
-
+
PL 01 - Prevention, Screening, and Management of Screen-Detected Lung Cancer (ID 586)
- Event: WCLC 2017
- Type: Plenary Session
- Track: Radiology/Staging/Screening
- Presentations: 1
- Moderators:Michael Boyer, Matthijs Oudkerk
- Coordinates: 10/16/2017, 08:15 - 09:45, Plenary Hall (Exhibit Hall D)
-
+
PL 01.02 - Major Advances in CT Screening: A Radiologist's Perspective (ID 7838)
08:35 - 08:55 | Author(s): Michael Chung
- Abstract
- Presentation
Abstract:
Advances in CT scanners. CT screening was first introduced when helical CT scanners became available in the early 1990’s (1-4). Since then, there have been remarkable advances in CT scanner technology with concurrent increase in the number of CT examinations per year by approximately 10% annually. More powerful hardware and image reconstruction algorithms have allowed faster scanning at lower radiation doses in today’s multidetector CT (MDCT) scanners. Ultra low-dose techniques are gaining acceptance. With respect to lung cancer screening, thinner collimation now possible has led to the detection of many more small pulmonary nodules. Also, there have been evolutions in diagnostic techniques such as percutaneous biopsies, navigational bronchoscopy, and PET scans and these advances have been integrated into the regimen of screening with a resulting decrease in the frequency of surgical resection of benign nodules (5). Definition of Positive Results. Updates in the definition of positive results have continued to be developed that allow for improvements in the efficiency of workups. One of the major changes has been to update the size thresholds for positive results from 4 to 6 mm and also to avoid rounding errors (6, 7). The NELSON trial introduced the concept that a positive result should be based on the initial CT scan and a follow-up CT scan for small nodules, rather than solely on the initial CT scan and this has been adopted by I-ELCAP (6). The I-ELCAP and NLST databases have been used to provide follow-up strategies for nonsolid and part-solid nodules (6). Considerations as to screening frequency may substantially reduce costs for lower risk individuals. There is increasing recognition that different approaches are needed for baseline and repeat scans where even when nodules might have the same characteristics as they should be managed differently. The management of both nonsolid and part-solid nodules has dramatically changed. For the first time, imaging as a biomarker for aggressiveness has been used to monitor whether a cancer is progressing. Growing nonsolid nodules can be followed on an annual basis and only the emergence of a solid component triggers more aggressive intervention. For the part-solid nodule it has now been recognized that the important component from a prognostic perspective is the solid portion not the overall size. Quantitative assessments. Quantitative assessment of many findings on chest CT scans have been developed (6). In particular, assessment of nodule size and growth as to the probability of malignancy and lung cancer aggressiveness has progressed. Most guideline organizations have moved from a single measurement of length to an average diameter (average of length and width) (6) and to three measurements of volume (7). The errors involved in any of these measurements are influenced by multiple factors including the intrinsic properties of the nodule and the software used to make the measurement (8, 9). Additionally, they are impacted by the variability of CT scanners and their adjustable scan parameters. Advances in incorporating measurement errors into growth assessment by RSNA’s Quantitative Imaging Biomarkers Alliance (QIBA) has led to a web-based calculator. The American College of Radiology (ACR) specifies that growth for a nodule of any size requires “an increase of 1.5 mm or more.” Both approaches allow for large measurement errors for the wide range of CT scanners and the protocols. The I-ELCAP guidelines for solid and the solid component of part-solid nodules is given explicitly in I-ELCAP protocol (6). Each of these approaches has specific technical requirements as measurement error is influenced by both the scanner itself, the choice of various adjustable parameters on the scanner (slice thickness, slice spacing, dose, FOV, pitch, recon kernel etc.) as well as characteristics of the nodule itself. Additional considerations for computer-assisted volume change assessment requires: 1) inspecting the computer scans and the segmentation for image quality (e.g. motion artifacts) and for the quality of the segmentation; 2) the radiologist visually inspecting both nodule image sets side-by-side to verify the quality of the computer segmentation for each image that contains a portion of the nodule; 3) examination of the segmentations for errors such as when a vessel is segmented as part of a nodule in one scan but not in the other; 4) that the scan slice thickness for the purpose of volumetric analysis should be 1.25 mm or less. When using any computer-assisted software, the radiologist must be satisfied with the CT image quality and the computer segmentation results, further substantiating the notion that the decision of whether growth has occurred is ultimately based on clinical judgment. Innovations in use of imaging and genetic information. Radiomics is an emerging field of study on the quantitative processing and analysis of radiologic images and metadata to extract information on tumor behavior and patient survival (10). The hypothesis is that data analysis through automated or semi-automated software can provide more information than that of a physician. Its use has shown improved diagnostic accuracy in discriminating lung cancer from benign nodules. It has been used successfully in breast imaging, with 2017 FDA approval of a computer-aided diagnosis tool which utilizes advanced machine learning analytics. Furthermore, radiomics has been linked with the field of genomics, inferring that imaging features are closely linked to gene signatures such as EGFR expression, a known therapeutic target. In the future, as larger data sets emerge and inter-institutional sharing of images becomes more commonplace, radiomics will become more tightly integrated with lung cancer diagnosis, treatment planning, and patient survival prognostication. References 1. Henschke C, McCauley D, Yankelevitz D, Naidich D, McGuinness G, Miettinen O, Libby D, Pasmantier M, Koizumi J, Altorki N, and Smith J. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet 1999; 354:99-105. 2. The International Early Lung Cancer Action Program Investigators. Survival of Patients with Stage I lung cancer detected on CT screening. NEJM 2006; 355:1763-71 3. Kaneko M, Eguchi K, Ohmatsu H, Kakinuma R, Naruke T, Suemasu K, and Moriyama N. Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology 1996; 201: 798-802. 4. Sone S, Nakayama T, Honda T, Tsushima K, Li F, Haniuda M, et al. Long-term follow-up study of a population-based 1996-1998 mass screening programme for lung cancer using mobile low-dose spiral computed tomography. Lung Cancer. 2007; 58:329-41. 5. Linek HC, Flores RM, Yip R, Hu M, Yankelevitz DF, Powell CA. Non-malignant resection rate is lower in patients who undergo pre-operative fine needle aspiration for diagnosis of suspected early-stage lung cancer. Am J Respir and Crit Care Med 2015; 191: A3561 6. International Early Lung Cancer Action Program protocol. http://www.ielcap.org/sites/default/files/I-ELCAP%20protocol-v21-3-1-14.pdf Accessed March 27, 2015 7. Van Klaveren RJ et al. Management of Lung Nodules Detected by Volume CT Scanning. N Engl J of Medicine 2009; 361: 2221-9 8. Henschke CI, Yankelevitz DF, Yip R, Archer V, Zahlmann G, Krishnan K, Helba B, Avila R. Tumor volume measurement error using computed tomography (CT) imaging in a Phase II clinical trial in lung cancer. Journal of Medical Imaging 2016; 3:035505 9. Avila RS, Jirapatnakul A, Subramaniam R, Yankelevitz D. A new method for predicting CT lung nodule volume measurement performance. SPIE Medical Imaging 2017: 101343Y 10. Lee G, Lee HY, Park H, et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art. Eur J Radiol. 2017; 86:297-307.
Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.