Virtual Library

Start Your Search

S. Ou



Author of

  • +

    MA07 - ALK-ROS1 in Advanced NSCLC (ID 385)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      MA07.02 - Updated Efficacy and Safety Data from the Phase 2 NP28761 Study of Alectinib in ALK-Positive Non-Small-Cell Lung Cancer (ID 4918)

      11:06 - 11:12  |  Author(s): S. Ou

      • Abstract
      • Presentation
      • Slides

      Background:
      Alectinib, a CNS-active and highly selective ALK inhibitor, has efficacy in patients with ALK-positive NSCLC with and without previous crizotinib treatment. Updated efficacy and safety from the alectinib phase 2 North American NP28761 study (NCT01871805) of patients with ALK-positive NSCLC previously treated with crizotinib, with 15 months’ additional follow-up from the primary analysis and 9 months’ additional follow-up from the previous analysis are presented.

      Methods:
      Patients ≥18 years old with ALK-positive NSCLC (FDA-approved FISH test), disease progression following crizotinib, and ECOG PS ≤2 were enrolled. Patients received oral alectinib (600mg) twice daily until progression, death or withdrawal. Primary endpoint: overall response rate (ORR) by independent review committee (IRC; RECIST v1.1.) Secondary endpoints: investigator-assessed ORR; progression-free survival (PFS); overall survival (OS), CNS ORR (CORR); disease control rate (DCR); safety.

      Results:
      At the updated cut-off (22 January 2016) an additional 15 months' follow-up from the primary analysis, 87 patients were enrolled. Median follow-up: 17.0 months (range 1.1–28.6). ORR in the response evaluable population (REP; n=67) by IRC: 52.2% (95% CI 39.7–64.6), median duration of response: 14.9 months. Median PFS and OS: 8.0 and 22.7 months, respectively. Table 1 presents other efficacy endpoints. Grade ≥3 AEs were reported in 41% of the safety population (n=87); most common: elevated levels of blood creatine phosphokinase (8%), alanine aminotransferase (6%), aspartate aminotransferase (5%). Two patients withdrew due to AEs; 28% had AEs leading to dose modification/interruption. Mean dose intensity was 92.0%.

      IRC REP Responders, n CR, n (%) PR, n (%) SD, n (%) PD, n (%) Missing/NE, n (%) DCR, % (95% CI) n=67[*] 35 0 (0) 35 (52.2) 18 (26.9) 11 (16.4) 3 (4.5) 79.1 (67.4,88.1)
      Investigator REP Responders, n ORR, % (95% CI) n=87 [46[†]] 52.9 (41.9, 63.7)
      Measurable baseline CNS lesions (IRC)‖ Responders, n CORR, % (95% CI) Measurable/non-measurable baseline CNS lesions (IRC) Responders CORR,[‖] % (95% CI) n=16 12[‡] 75.0 (47.6, 92.7) n=52 21[§] 40.4 (27.0, 54.9)
      *n=20 did not have measurable disease per IRC and were not included in the IRC REP; [†]2 CR;[ ‡]4 CR;[ §]13 CR; [‖]non-measurable disease classified as CR, non-CR/non-PD or PD; NE=not evaluable/estimable

      Conclusion:
      Alectinib demonstrated durable responses, encouraging OS findings, good tolerability and an acceptable safety profile consistent with previous reports in this update of the NP28761 study with extended follow-up.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA08 - Treatment Monitoring in Advanced NSCLC (ID 386)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      MA08.01 - A Highly Sensitive Next-Generation Sequencing Platform for Detection of NSCLC EGFR T790M Mutation in Urine and Plasma (ID 4637)

      11:00 - 11:06  |  Author(s): S. Ou

      • Abstract
      • Presentation
      • Slides

      Background:
      Non-invasive genotyping of NSCLC patients by circulating tumor (ct)DNA is a promising alternative to tissue biopsies. However, ctDNA EGFR analysis remains challenging in patients with intrathoracic disease, with a reported 26-57% T790M mutation detection rate in plasma (Karlovich et al., Clin Cancer Res 2016; Wakelee et al., ASCO 2016). We investigated whether a mutation enrichment NGS could improve mutation detection in plasma and urine from TIGER-X, a phase 1/2 study of rociletinib in patients with EGFR mutation-positive advanced NSCLC.

      Methods:
      The therascreen (Qiagen) or cobas (Roche) EGFR test was used for EGFR T790M analysis in tumor biopsies. Urine and plasma were analyzed by trovera mutation enrichment NGS assay (Trovagene).

      Results:
      Of 174 matched tissue, plasma and urine specimens, 145 (83.3%) were T790M+ by central tissue testing, 142 (81.6%) were T790M+ by plasma, and 139 (79.9%) were T790M+ by urine. Urine and plasma combined identified 165 cases (94.8%) as T790M+. Of 25 cases positive by ctDNA but negative/inadequate by tissue, 16 were double-positive in plasma and urine, unlikely to be false positive (Figure 1). T790M detection rate was higher for extrathoracic (n=119) vs intrathoracic (n=55) disease in plasma (87.4% vs 69.1%, p=0.006) but not urine (81.5% vs 76.4%, p=0.42). Combination of urine and plasma identified T790M in 92.7% of intrathoracic and 95.8% of extrathoracic cases (p=0.47). In T790M+ patients, objective response rate was similar whether T790M mutation was identified by tissue, plasma or urine: 37.4%, 33.1% and 36.6%, respectively. 4 of 9 patients T790M+ by urine but negative by tissue responded, and 2 of 8 patients T790M+ by plasma but negative by tissue responded.

      Conclusion:
      Mutation enrichment NGS testing by urine and plasma combined identified 94.8% of T790M+ cases. Combination of urine and plasma may be considered before tissue testing in EGFR TKI resistant NSCLC, including patients without extrathoracic metastases. Figure 1



      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA14 - Immunotherapy in Advanced NSCLC: Biomarkers and Costs (ID 394)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      MA14.01 - Updated Dataset Assessing Tumor Mutation Burden (TMB) as a Biomarker for Response to PD-1/PD-L1 Targeted Therapies in Lung Cancer (LC) (ID 4011)

      16:00 - 16:06  |  Author(s): S. Ou

      • Abstract
      • Presentation
      • Slides

      Background:
      Immune checkpoint inhibitors (ICPIs) nivolumab and pembrolizumab have been FDA-approved in non-small cell LC (NSCLC). Current IHC based diagnostics are challenged by assay and slide scoring issues and modest predictive value, and more robust and comprehensive biomarkers of ICPI efficacy are needed. A discovery set of 64 NSCLCs treated with ICPIs suggested that high TMB (≥15 mutations/Mb) significantly correlated with longer time on drug (Spigel et al., ASCO 2016, Abstract:9017).

      Methods:
      Comprehensive genomic profiling (CGP) was performed during the course of clinical care. TMB was assessed as the number of somatic, coding, base substitution and indels per Mb of genome. Microsatellite instability-high (MSI-H) or stable (MSS) status was determined using a proprietary algorithm.

      Results:
      15,529 LCs: 66% adenocarcinoma, 1% sarcomatoid, 14% NSCLC NOS, 11% squamous, 5% small cell, and 2% large cell were assessed. TMB was similar across all lung histologies (median: 6.3, 8.1, 9.0, 9.9, 9.9, and 10.8); the median was 7.6 for all LC cases (TMB ≥15 in 24% of cases), compared to 4.5 for 80,000+ samples of diverse tumor types in the database. Of LCs assessed 0.3% were MSI-H, of which 30/31 were TMB-high; however, 24% of MSS-stable cases were also TMB-high. PD-L1 amplification and DNA repair pathway mutation (MLH1, MSH2, POLE) were found in 1.0% and 1.1% of LC cases analyzed, respectively. Tumors harboring known drivers (ALK, ROS1, EGFR, BRAF V600E, MET splice) had low TMB (median: 2.5, 3.6, 3.8, 3.8, 4.5), whereas tumors with KRAS mutation, non-V600E BRAF mutation, PD-L1 amplification, or DNA repair alterations were more likely to be TMB-high (median: 9.0, 10.8, 14.4, 21.6).

      Conclusion:
      High TMB may be a predictive biomarker of response to ICPIs. Several factors including lack of a known driver, MSI-H status, PD-L1 amplification, and DNA repair mutation correlated with high TMB (P<0.0001 for all cases). However, 95% of TMB-high cases assessed were MSS and lacked both PD-L1 amplification and DNA repair mutation, and thus would likely not be selected for immunotherapy by assessment of individual genomic alterations or MSI status alone. A validation cohort of NSCLC patients treated with anti-PD-1/PD-L1 therapies including analysis of clinical outcome, TMB, genomic profile, and available clinicopathologic characteristics will be presented. CGP of LC to simultaneously determine TMB, MSI status, PD-L1 amplification, and the presence of driver alterations may provide clinically useful predictors of response to ICPI and other targeted therapies using a single platform, but prospective clinical trials are needed to confirm these observations.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA16 - Novel Strategies in Targeted Therapy (ID 407)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Chemotherapy/Targeted Therapy/Immunotherapy
    • Presentations: 2
    • +

      MA16.03 - Global RET Registry (GLORY): Activity of RET-Directed Targeted Therapies in RET-Rearranged Lung Cancers (ID 4325)

      14:26 - 14:32  |  Author(s): S. Ou

      • Abstract
      • Presentation
      • Slides

      Background:
      GLORY is a global registry of patients with RET-rearranged non-small cell lung cancer (NSCLC). In order to complement ongoing prospective studies, the registry’s goal is to provide data on the efficacy of RET-directed targeted therapies administered outside the context of a clinical trial. We previously reported results from our first interim analysis (Gautschi, ASCO 2016). Following additional accrual into the registry, updated results are presented here, with a focus on an expanded efficacy analysis of various RET inhibitors.

      Methods:
      A global, multicenter network of thoracic oncologists identified patients with pathologically-confirmed NSCLC harboring a RET rearrangement. Molecular profiling was performed locally via RT-PCR, FISH, or next-generation sequencing. Anonymized data including clinical, pathologic, and molecular features were collected centrally and analyzed by an independent statistician. Response to RET tyrosine kinase inhibition (TKI) administered off-protocol was determined by RECIST1.1 (data cutoff date: April 15, 2016). In the subgroup of patients who received RET TKI therapy, the objectives were to determine overall response rate (ORR, primary objective), progression-free survival (PFS), and overall survival (OS).

      Results:
      165 patients with RET-rearranged NSCLC from 29 centers in Europe, Asia, and the USA were accrued. The median age was 61 years (range 28-89 years). The majority of patients were female (52%), never smokers (63%), with lung adenocarcinomas (98%) and advanced disease (91%). The most frequent metastasic sites were lymph nodes (82%), bone (51%) and lung (32%). KIF5B-RET was the most commonly identified fusion (70%). 53 patients received at least one RET-TKI outside of a clinical protocol, including cabozantinib (21), vandetanib (11), sunitinib (10), sorafenib (2), alectinib (2), lenvatinib (2), nintedanib (2), ponatinib (2) and regorafenib (1). In patients who were evaluable for response (n=50), the ORR was 37% for cabozantinib, 18% for vandetanib, and 22% for sunitinib. Median PFS was 3.6, 2.9, and 2.2 months and median OS was 4.9, 10.2, and 6.8 months for cabozantinib, vandetanib, and sunitinib, respectively. Responses were also observed with nintedanib and lenvatinib. Among patients who received more than one TKI (n=10), 3 partial responses were achieved after prior treatment with a different TKI.

      Conclusion:
      RET inhibitors are active in individual patients with RET-rearranged NSCLC, however, novel therapeutic approaches are warranted with the hope of improving current clinical outcomes. GLORY remains the largest dataset of patients with RET-rearranged NSCLC, and continues to accrue patients.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA16.09 - Antitumor Activity and Safety of Crizotinib in Patients with MET Exon 14-Altered Advanced Non-Small Cell Lung Cancer (ID 5162)

      15:14 - 15:20  |  Author(s): S. Ou

      • Abstract
      • Presentation
      • Slides

      Background:
      MET alterations leading to exon 14 skipping occur in ~4% of non-squamous non‑small cell lung cancer (NSCLCs) and 20–30% of sarcomatoid lung carcinomas, resulting in MET activation and sensitivity to MET inhibitors in vitro.[1–4] Crizotinib, initially developed as a MET inhibitor, is currently approved for the treatment of ALK-rearranged and ROS1-rearranged advanced NSCLC. We present crizotinib antitumor activity and safety data in patients (pts) with MET exon 14-altered advanced NSCLC.

      Methods:
      Advanced NSCLC pts positive for MET exon 14-alteration status determined locally by molecular profiling were enrolled into an expansion cohort of the ongoing phase I PROFILE 1001 study (NCT00585195) and received crizotinib at a starting dose of 250 mg BID. Objective responses were assessed using RECIST v1.0.

      Results:
      As of the data cut-off of Feb 01, 2016, 21 pts with MET exon 14-altered NSCLC received crizotinib treatment (18 response-evaluable, 3 not yet evaluable). Median age was 68 y (range: 53−87). Tumor histology was: 76% adenocarcinoma, 14% sarcomatoid adenocarcinoma, 5% adenosquamous carcinoma, and 5% squamous cell carcinoma. Sixty-two percent (62%) of pts were former-smokers, 38% never-smokers, and there were no current smokers. Duration of treatment ranged from 0.2 to 12.2 mo, with 76% of pts (16/21) still ongoing. Five pts discontinued treatment (1 due to AE, 3 due to clinical or disease progression, and 1 preferred alternative treatment formulation). PRs were observed in 8 pts, for an objective response rate of 44% (95% CI: 22–69); 9 pts had stable disease. Median time to response was 7.8 weeks (range: 7.0–16.3), which was the approximate time of the scheduled first on treatment tumor scans for patients. Median progression-free survival could not be calculated. The most common (≥25%) treatment-related AEs (TRAEs) were edema (43%) diarrhea (33%), nausea (33%), vision disorder (33%), and vomiting (29%). Most TRAEs were grade 1/2 in severity and consistent with the known safety profile of crizotinib. Four grade 3 TRAEs (edema, bradycardia, anemia, and weight increased) and no grade 4 or 5 TRAEs were reported. Enrollment of pts with MET exon 14-altered NSCLC continues, and updated data will be available at the time of presentation.

      Conclusion:
      Crizotinib has clinically meaningful antitumor activity in pts with MET exon 14-altered advanced NSCLC. The drug has a tolerable AE profile, consistent with that previously reported for pts with ALK-rearranged or ROS1-rearranged advanced NSCLC. Further study of crizotinib in this pt population is warranted.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    OA08 - Targeted Therapies in Brain Metastases (ID 381)

    • Event: WCLC 2016
    • Type: Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      OA08.06 - Brigatinib Activity in Patients with ALK+ NSCLC and Intracranial CNS Metastases in Two Clinical Trials (ID 4374)

      16:55 - 17:05  |  Author(s): S. Ou

      • Abstract
      • Presentation
      • Slides

      Background:
      Patients treated with crizotinib often experience disease progression in the brain. Brigatinib, an investigational next-generation ALK inhibitor, is being evaluated in an ongoing phase 1/2 trial (Ph1/2) and an ongoing pivotal phase 2 trial (ALTA).

      Methods:
      In Ph1/2, patients with advanced malignancies, including ALK+ NSCLC, received 30–300 mg brigatinib per day. In ALTA, patients with crizotinib-resistant advanced ALK+ NSCLC received 90 mg qd (arm A) or 180 mg qd with a 7-day lead-in at 90 mg (arm B). Efficacy (in both trials) and safety (in ALTA) are reported for ALK+ NSCLC patients with brain metastases at baseline.

      Results:
      In Ph1/2 and ALTA, 50/79 (63%; IRC-assessed) and 154/222 (69%; investigator-assessed) of ALK+ NSCLC patients, respectively, had baseline brain metastases. In Ph1/2 (n=50), median age was 53 years, 76% received prior chemotherapy, and 8% were crizotinib-naive. In ALTA (n=154), median age was 52 years; 75% received prior chemotherapy. As of November 16, 2015, 25/50 (50%) patients were receiving brigatinib in Ph1/2; as of February 29, 2016, 101/154 (66%) patients were receiving brigatinib in ALTA. For patients with measurable lesions, confirmed iORR was 53% in Ph1/2 and 42%/67% in ALTA A/B (Table). Among patients with only nonmeasurable lesions (Ph1/2, n=31; ALTA A/B, n=54/n=55), 35% had confirmed complete resolution of lesions in Ph1/2; 7%/18% had confirmed complete resolution in ALTA A/B. For all evaluable patients with baseline brain metastases, median intracranial PFS was 15.6 months in Ph1/2 (n=46) and 15.6/12.8 months in ALTA A/B (n=80/n=73). Most common treatment-emergent adverse events in ALTA in patients with baseline brain metastases (n=151 treated): nausea (A/B, 32%/43%), headache (30%/30%), diarrhea (18%/36%), cough (21%/30%), vomiting (25%/26%); grade ≥3 (excluding neoplasm progression): increased blood CPK (1%/11%), hypertension (4%/7%), increased lipase (3%/3%), pneumonia (1%/4%).

      Conclusion:
      Brigatinib has demonstrated substantial clinical activity in ALK+ NSCLC patients with brain metastases in both Ph1/2 and ALTA.

      IRC-Assessed Confirmed Intracranial Response Rates for Patients With Measurable Brain Metastases at Baseline
      Any No rad/active[a]
      Ph1/2[b] n=15 n=9
      iORR 8(53) 6(67)
      iDCR 13(87) 8(89)
      ALTA[c]
      Arm A n=26 n=19
      iORR 11(42) 8(42)
      iDCR 22(85) 16(84)
      Arm B n=18 n=15
      iORR 12(67) 11(73)
      iDCR 15(83) 14(93)
      Data are n(%) iDCR=intracranial disease control rate iORR=intracranial objective response rate IRC=independent review committee [a]No prior brain radiotherapy (Ph1/2); active (untreated or treated and progressed) brain lesions (ALTA) [b]NCT01449461; last scan date: October 8, 2015 [c]NCT02094573; last scan date: April 14, 2016


      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    OA10 - EGFR Mutations (ID 382)

    • Event: WCLC 2016
    • Type: Oral Session
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      OA10.01 - Comprehensive Genomic Profiling and PDX Modeling of EGFR Exon 20 Insertions: Evidence for Osimertinib Based Dual EGFR Blockade (ID 4375)

      11:00 - 11:10  |  Author(s): S. Ou

      • Abstract
      • Slides

      Background:
      EGFR exon 20 insertion mutations (EGFRex20ins) comprise a subset of EGFR activating alterations relatively insensitive to 1[st] and 2[nd] generation EGFR-TKIs. Comprehensive genomic profiling (CGP) integrated with PDX modeling may identify new EGFR-inhibition strategies for EGFRex20ins.

      Methods:
      EGFRex20ins and co-occurring genomic alterations were identified by hybrid-capture based CGP performed on 14,483 consecutive FFPE lung cancer specimens to a mean coverage depth of >650X for 236 or 315 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer. An EGFRex20ins(N771_P772>SVDNP)/EGFR-amplified tumor (24 copies) from this cohort was implanted subcutaneously into the flank of NOD.Cg-Prkdc[scid]Il2rg[tm1Wjl]/SzJ (NSG) mice for tumor growth inhibition studies (TGI) with vehicle, erlotinib (50 mg/kg PO daily), osimertinib (25 mg/kg PO daily), and osimertinib (25 mg/kg PO daily) plus cetuximab (10 mg/kg IV, 2x/week) administered for 21 days.

      Results:
      CGP identified 263/14,483 cases (1.8%) with EGFRex20ins, which represent 12% (263/2,251) of EGFR activating mutations in this series. 90% (237/263) were NSCLC-adenocarcinoma, 9% (23/263) were NSCLC-NOS, and 1% (2/263) were sarcomatoid carcinoma. Over 60 unique EGFRex20ins were identified, most commonly D770_N771>ASVDN (21%) and N771_P772>SVDNP (20%); 6% (15/263) harbored EGFR A763_Y764insFQEA, an EGFRex20ins typically sensitive to erlotinib. Among EGFRex20ins cases, EGFR-amplification occurred in 22% (57/263). Putative co-occurring driver alterations including EGFR (ex19del and L858R), Her2, MET and KRAS tended to be mutually exclusive, occurring only in 5% (12/263) of cases. The most common co-occurring alterations affected TP53 (56%), CDKN2A (22%), CDKN2B (16%), NKX2-1 (14%) and RB1 (11%). Average tumor mutation burden was low (mean 4.3 mutations/Mb, range 0-40.3 mutations/Mb). Clinical outcomes to 1st and 2nd generation EGFR-TKIs were obtained for a subset of cases with various EGFRex20ins, and 0/6 patients had responses. However, robust TGI was observed with combination osimertinib and cetuximab in a highly EGFR-amplified PDX model with a conserved EGFRex20ins (N771_P772>SVDNP) not associated with response to earlier generation EGFR-TKI, and was superior to vehicle, erlotinib or osimertinib alone (D21 mean tumor size 70 mm[3] vs. 1000, 800, 225 mm[3] respectively; p-values all <0.001).

      Conclusion:
      Diverse EGFRex20ins were detected in 12% of EGFR-mut NSCLC. Available clinical outcomes data demonstrated lack of response to 1[st] and 2[nd] generation EGFR-TKIs. Identification of co-occurring EGFR-amplification in 22% of cases led to testing of a dual EGFR blockade strategy with an EGFR monoclonal antibody and osimertinib, which demonstrated exceptional tumor growth inhibition in an EGFRex20ins PDX minimally responsive to erlotinib. These findings can rapidly be translated into an ongoing clinical trial of osimertinib and necitumumab.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.02a - Poster Session with Presenters Present (ID 470)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      P3.02a-016 - Pooled Efficacy and Safety Data from Two Phase II Studies (NP28673 and NP28761) of Alectinib in ALK+ Non-Small-Cell Lung Cancer (NSCLC) (ID 5044)

      14:30 - 14:30  |  Author(s): S. Ou

      • Abstract
      • Slides

      Background:
      Alectinib is an FDA-approved ALK TKI, for treatment of patients with ALK+ metastatic NSCLC who have progressed on, or are intolerant to, crizotinib. Systemic and CNS efficacy was demonstrated in two single-arm, phase II studies (NP28673 [NCT01801111] and NP28761 [NCT01871805]). We report the pooled systemic efficacy and safety analysis of alectinib from 2016 cut-offs 22 January, NP28761 and 1 February, NP28673.

      Methods:
      Patients were ≥18 years, had locally advanced or metastatic ALK+ NSCLC [FDA-approved FISH test] and had progressed on, or were intolerant to, crizotinib. Patients received oral alectinib 600mg twice daily until disease progression, death or withdrawal. The pooled analysis assessed objective response rate (ORR) by an independent review committee (IRC) using RECIST v1.1 (primary endpoint in both studies); disease control rate (DCR); duration of response (DOR); progression-free survival (PFS); overall survival (OS); and safety.

      Results:
      The pooled dataset included 225 patients, (n=138 NP28673; n=87 NP28761). Median age was 53 years, 60% of patients had baseline CNS metastases and 77% had received prior chemotherapy. The response-evaluable (RE) population by IRC included 189 patients (84%). Median follow-up was 18.8 months (0.6–29.7). In the RE population (n=189) ORR by IRC was 51.3% (95% CI 44.0–58.6; all partial responses), a DCR of 78.8% (95% CI 72.3–84.4), with a median DOR of 14.9 months (95% CI 11.1–20.4) after 58% of events. In patients with prior chemotherapy (n=148), IRC ORR was 49.3% (95% CI 41.0–57.7); DCR: 79.1% (95% CI 71.6–85.3); median DOR: 14.9 months (95% CI 11.0–21.9) after 59% of events. In patients who were chemotherapy-naïve (n=41), IRC ORR was 58.5% (95% CI 42.1–73.7); DCR: 78.0% (95% CI 62.4–89.4); median DOR: 11.2 months (95% CI 8.0–NE) after 54% of events. In the total pooled population (n=225) median PFS by IRC was 8.3 months (95% CI 7.0–11.3) after 69% of events and median OS was 26.0 months (95% CI 21.4–NE) after 43% of events. Grade ≥3 adverse events (AEs) occurred in 40% of patients and the most common were dyspnoea (4%), elevated levels of blood creatine phosphokinase (4%) and alanine aminotransferase (3%). The mean dose intensity was 94.6%. Fourteen patients withdrew due to AEs; 20.9% had AEs leading to dose interruptions/modification.

      Conclusion:
      This pooled analysis confirmed alectinib has robust systemic efficacy with a durable response in this population and in patients with or without prior chemotherapy. Alectinib had an acceptable safety profile.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    SC11 - ALK, ROS1 and Rare Mutations in NSCLC (ID 335)

    • Event: WCLC 2016
    • Type: Science Session
    • Track: Chemotherapy/Targeted Therapy/Immunotherapy
    • Presentations: 1
    • +

      SC11.02 - Resistance to ALK Inhibitor Therapy (ID 6642)

      16:20 - 16:40  |  Author(s): S. Ou

      • Abstract
      • Presentation
      • Slides

      Abstract not provided

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.