Virtual Library
Start Your Search
E. Jin
Author of
- 
                        +P3.02b - Poster Session with Presenters Present (ID 494)- Event: WCLC 2016
- Type: Poster Presenters Present
- Track: Advanced NSCLC
- Presentations: 1
 - Moderators:
- Coordinates: 12/07/2016, 14:30 - 15:45, Hall B (Poster Area)
 - 
                                +P3.02b-123 - Lysimachia Capillipes Capilliposide Inhibits AKT Activation and Restores Sensitivity to Gefitinib in NSCLC with Acquired Gefitinib Resistance (ID 4970)14:30 - 14:30 | Author(s): E. Jin - Abstract
 Background: 
 Most non-small cell lung cancer (NSCLC) patients responding to gefitinib will eventually develop the resistance. Lysimachia capillipes (LC) capilliposide extracts from LC hemsl shows both in vitro and in vivo anti-cancer effects. We investigated whether LC capilliposide combined with gefitinib could overcome the resistance of NSCLC cells to gefitinib, and to identify the involved molecular signaling.
 Methods:
 NSCLC cell lines with different sensitivities to gefitinib were studied. Cell proliferation was assessed with MTT assay. Cell apoptosis and cell cycle distribution were measured using cytometry. EGFR-related signaling proteins and Human Phospho-Kinase were analyzed using Western blotting and protein array, respectively. Tumor growth inhibition were evaluated in PC-9-GR xenograft. CC3, Ki67 and pEGFR were assessed by IHC on tumor tissues.
 Results:
 LC capilliposide inhibited cell growth in gefitinib-sensitive and -resistant cells. In gefitinib resistant cell PC-9-GR with T790M mutation, the LC capilliposide combined with gefitinib was potent in cell growth inhibition and apoptosis induction, but no obvious effect on gefitinib-induced G0/G1 arrest. LC capilliposide remarkable blocks the phosphorylation of EGFR downstream signaling molecule AKT, on which LC capilliposide and gefitinib alone had no obvious effect. The Human Phospho-Kinase array further confirmed the enhanced inhibitory effect on the AKT signaling. LC capilliposide treatment also enhanced tumor growth inhibition when combined with gefitinib in PC-9-GR xenografts.
 Conclusion:
 LC capilliposide restored the sensitivity to gefitinib in NSCLC cells with acquired gefitinib resistance, suggesting that combination of LC and gefitinib may be a promising therapeutic strategy to overcome gefitinib resistance in NSCLCs with T790M mutation.
 
 





