Virtual Library
Start Your Search
M. Lupien
Author of
-
+
P3.02b - Poster Session with Presenters Present (ID 494)
- Event: WCLC 2016
- Type: Poster Presenters Present
- Track: Advanced NSCLC
- Presentations: 1
- Moderators:
- Coordinates: 12/07/2016, 14:30 - 15:45, Hall B (Poster Area)
-
+
P3.02b-028 - Characterizing Residual Erlotinib-Tolerant Population Using EGFR-Mutated NSCLC Primary Derived Xenografts: The Last Holdouts (ID 5455)
14:30 - 14:30 | Author(s): M. Lupien
- Abstract
Background:
Three generations of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have led to multi-fold improvements in progression free survival of advanced stage non-small cell lung cancer (NSCLC) patients carrying EGFR kinase domain mutations. However, cure is not yet achievable with any EGFR TKI monotherapy, as patients will eventually progress due to acquired resistance. In vitro evidence suggests that minor populations of epigenetically modified drug tolerant cells (DTCs) may be one important mechanism for tumor cells surviving the TKI. We hypothesize that characterizing the genomic and epigenomic alterations observed in DTCs in vivo and comparing them to the bulk tumour will delineate a number of mechanisms of tolerance exhibited by DTCs.
Methods:
DTCs were induced via chronic erlotinib treatment of a lung adenocarcinoma primary derived xenograft (PDX) harbouring an erlotinib sensitive exon 19 deletion. Molecular profiles of DTCs are compared to untreated controls via immunohistochemistry (IHC) and gene expression array. We are now undertaking exome-sequencing, assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), methylated DNA immunoprecipitation and sequencing (MeDIP-seq).
Results:
When compared to untreated tumours, DTCs exhibit decreased apoptosis (CC3 IHC) and proliferation (Ki67 IHC). DTCs maintained strong signaling via the EGFR pathway (pERK, pAKT, pS6). DTCs exhibited 2437 significantly differentially expressed genes (DEGs; >1.5-fold change and adjusted p-value <0.05) including multiple cancer stem cell markers (ALDH1A1, ALDH1A3, CD44). DEGs also were involved in vesicle-mediated transport (including lysosomes, exosomes and endosomes), autophagy, stress/unfolded protein response, cytoskeleton organization, chromatin organization, ion pumps and transporters, cell adhesion, WNT, NOTCH, PI3K and MAPK pathways. DTCs remained resistant to three cycles of cisplatin/vinorelbine either alone or when combined with erlotinib. Genomic and epigenomic profiling are on-going and results will be presented.
Conclusion:
DTCs may be a major impediment to cure by single-agent EGFR targeted therapies. Understanding the mechanisms and developing strategies to overcome DTCs may give insights on therapeutic strategy to further improve the survival of EGFR-mutated NSCLC patients.