Virtual Library
Start Your Search
N. Krämer
Author of
-
+
P3.02b - Poster Session with Presenters Present (ID 494)
- Event: WCLC 2016
- Type: Poster Presenters Present
- Track: Advanced NSCLC
- Presentations: 1
- Moderators:
- Coordinates: 12/07/2016, 14:30 - 15:45, Hall B (Poster Area)
-
+
P3.02b-003 - Second-Line Afatinib versus Erlotinib for Patients with Squamous Cell Carcinoma of the Lung (LUX-Lung 8): Analysis of Tumour and Serum Biomarkers (ID 5627)
14:30 - 14:30 | Author(s): N. Krämer
- Abstract
Background:
LUX-Lung 8 compared second-line afatinib (40 mg/day; n=398) and erlotinib (150 mg/day; n=397) in patients with stage IIIB/IV squamous cell carcinoma (SCC) of the lung. PFS (median 2.6 vs 1.9 months, HR=0.81 [95% CI, 0.69–0.96], p=0.010) and OS (median 7.9 vs 6.8 months, HR=0.81 [0.69–0.95], p=0.008) were both significantly improved with afatinib versus erlotinib. Here we report exploratory molecular (n=245) and immunohistochemical (n=288) analyses of tumour samples to assess the frequency of short variants (SVs) and copy number alterations (CNAs) in cancer-related genes and whether these tumour genomic alterations, or EGFR expression levels, have clinical utility as prognostic/predictive biomarkers in patients with SCC of the lung. We also assessed the predictive utility of the prospectively validated VeriStrat®, a serum protein test (n=675).
Methods:
Archived tumour samples were retrospectively analysed using next-generation sequencing (FoundationOne™). Tumour EGFR expression was assessed by immunohistochemistry; EGFR positivity was defined as staining in ≥10% of cells. Pretreatment serum samples were assigned as VeriStrat-Good or VeriStrat-Poor according to a mass spectrometry signature. Cox regression analysis was used to correlate OS/PFS with genomic alterations (individual or grouped into gene families e.g. ErbB family), EGFR expression levels and VeriStrat status.
Results:
The frequency of ErbB family alterations was low (SVs: EGFR 6.5%, HER2 4.9%, HER3 6.1%, HER4 5.7%; CNAs: EGFR 6.9%, HER2 3.7%). No individual genetic alterations, or grouped ErbB family aberrations, were prognostic of OS/PFS. Treatment benefit from afatinib versus erlotinib was consistent in all molecular subgroups. Most tumours were EGFR-positive by immunohistochemistry (afatinib: 82%; erlotinib: 86%). EGFR expression was not predictive of OS or PFS benefit (EGFR-positive PFS: HR=0.76 [0.57‒1.02]; OS: HR=0.84 [0.63‒1.12]; EGFR-negative PFS: HR=0.87 [0.45‒1.68]; OS: HR=0.77 [0.40‒1.51]). In afatinib-treated patients, both PFS (HR=0.56 [0.43‒0.72], p<0.0001) and OS (HR=0.40 [0.31‒0.51], p<0.0001) were improved in the VeriStrat-Good versus the VeriStrat-Poor group. VeriStrat-Good patients had significantly longer OS and PFS when treated with afatinib versus erlotinib (median OS: 11.5 vs 8.9 months, HR=0.79 [0.63‒0.98]; PFS: HR=0.73 [0.59‒0.92]). In VeriStrat-Poor patients there was no significant difference in OS between afatinib and erlotinib (HR=0.90 [0.70‒1.16]). However, there was no significant interaction between treatment arms and VeriStrat classification.
Conclusion:
Despite comprehensive, multifaceted analysis, no biomarkers were identified that predicted the benefit with afatinib over erlotinib in patients with SCC of the lung. Afatinib is a treatment option in this setting irrespective of patients’ tumour genetics or EGFR expression levels. However, patient outcome strongly depends on VeriStrat status.