Virtual Library

Start Your Search

K. Ng



Author of

  • +

    P2.01 - Poster Session with Presenters Present (ID 461)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      P2.01-022 - A PIWI-Interacting RNAs Co-Expression Networks as a Prognostic Factor in Lung Cancer (ID 5812)

      14:30 - 14:30  |  Author(s): K. Ng

      • Abstract

      Background:
      PIWI-interacting RNAs (piRNAs) are small (24-32 nucleotides) non-coding RNAs. Their functions, widely conserved across species, are associated to epigenetic control of gene expression and maintenance of genomic stability by the repression of mobile elements. In humans, >23,000 piRNAs are known, showing tissue-specific expression patterns. While the aberrant expression of individual piRNAs has been identified in some cancer types, the role of piRNA co-expression networks in the development of lung tumors and their utility as molecular markers remains unexplored. By analyzing over 7000 piRNA transcriptomes from human tumors and non-malignant tissues, we have identified lung cancer (LC) specific expression networks associated with clinically-relevant tumor features and patient prognosis.

      Methods:
      We developed a custom small-RNA sequence analysis pipeline to generate >7,000 human piRNA transcriptomes. piRNA expression baseline was deduced from 6,378 piRNA transcriptomes (non-malignant/tumors) from 11 organ sites. In lungs, we analyzed 1,082 tumors and 209 non-malignant samples from two cohorts: BC Cancer Agency (BCCA) and The Cancer Genome Atlas (TCGA). Network analysis was performed using the weighted gene co-expression network analysis (WCGNA). We evaluated tumour aggressiveness by considering correlation to several clinical parameters, including stage, number of mutations, nodal/distant metastasis, and overall/disease-free survival. piRNA survival signatures were identified using a Cox Proportional Hazard model.

      Results:
      A subset of piRNA showed robust expression in somatic tissues. Expressed piRNAs display organ-specific patterns and mainly map to coding transcripts, suggesting a role in regulation of gene expression. In lungs, 204 piRNAs were consistently expressed in both LC cohorts. Tumor piRNA expression profiles are markedly different from their non-malignant counterparts (133 piRNAs were differentially expressed). The patterns differ between the adenocarcinoma and squamous cell carcinoma, and were influenced by smoking status. Network-based analysis identified piRNA expression changes in two modules of piRNAs are associated with aggressiveness tumor features, such as increased number of mutations, tumor size and nodal metastasis. Finally, combined expression of piRNAs define signatures associated with patient overall and recurrence free survival.

      Conclusion:
      We provide evidence of somatic, tissue-specific human piRNA expression. In lungs, aberrant expression patterns are associated with well-established etiological factors of cancer and seem to contribute to lung cancer subtype-specific biology. We discover that specific piRNA-based expression patterns characterize aggressive lung tumors and also exhibit prognostic value. The unique expression patterns of piRNAs offer an opportunity to better understand lung cancer-specific biology as well as develop novel prognostic markers for clinical application.

  • +

    P3.01 - Poster Session with Presenters Present (ID 469)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      P3.01-049 - ELF3 Overexpression Leads to Oncogenic Reprogramming of Protein Interactions Exposing Therapeutically Actionable Targets (ID 5807)

      14:30 - 14:30  |  Author(s): K. Ng

      • Abstract

      Background:
      Emerging evidence has implicated ELF3 involvement in cancer signaling pathways. To determine the biological basis to pursue ELF3 as a novel therapeutic target, we investigated the role of ELF3 in lung adenocarcinoma (LUAD). Using a multi-omics approach in two independent cohorts of LUAD we (a) discover genetic mechanisms driving aberrant expression of this oncogene, (b) identify the protein-protein-interaction (PPI) partners of ELF3, and (c) determine the specific functions of ELF3 in LUAD using model systems.

      Methods:
      Comprehensive, multi-omic data was collected from the BC Cancer Research Centre (BCCRC), The Cancer Genome Atlas (TCGA), and several mouse models of LUAD tumourigenesis. ELF3 cellular localization was visualized by immunofluorescence. ELF3 knock-down and overexpression was achieved by lentiviral vector delivery for in vitro and in vivo assays. Physical protein-protein interaction (PPI) networks obtained from IID were overlaid onto cancer and non-malignant gene expression data from TCGA and 11 restructured datasets from Gene Expression Omnibus. PPIs were interrogated to investigate malignancy-associated ELF3 interactions. Pathway analysis was performed using pathDIP. Survival analysis was performed using the log-rank method.

      Results:
      ELF3 was significantly overexpressed in both cohorts, remarkably in >70% of cases (p=1.64E-21). However, mutation of known upstream regulators was not sufficient to explain the frequency of ELF3 overexpression. Instead, the ELF3 locus underwent frequent (>80%) genetic alteration including focal amplification and promoter hypomethylation, which corresponded with increased expression. ELF3 was predominantly localized to the nucleus, consistent with its transcription factor function. Analysis of PPI networks indicated highly LUAD-specific ELF3 interactions whereby loss and gain of interactions lead to reprogramming of LUAD transcriptional networks, including loss of TNFα pathway, and gain of TGFβ pathway, PI3K pathway, and translesion (DNA repair) pathway interactions. Furthermore, EGFR, KRAS, and MYC transgenic models of LUAD tumourigenesis all displayed a marked increase (6 to 8-fold) in ELF3 expression signifying its importance to LUAD of varied genetic backgrounds. In culture, ELF3 regulated proliferation, viability and anchorage-independent growth. In animal models, ELF3 knock-down cells underwent negative clonal selection, suggesting ELF3 expression is beneficial to tumour growth. Clinically, high expression of ELF3 was associated with poor survival regardless of tumour stage.

      Conclusion:
      Overexpression of ELF3 reprograms protein-protein-interactions in LUAD leading to the activation of cancer-specific pathways, and producing oncogenic phenotypes. Depletion of ELF3 with shRNAs reverses tumour cell growth, suggesting ELF3 is a promising therapeutic target. In addition to ELF3, interruption of cancer-specific PPIs also represents a therapeutically actionable strategy.