Virtual Library
Start Your Search
E. Carcereny
Author of
-
+
MA07 - ALK-ROS1 in Advanced NSCLC (ID 385)
- Event: WCLC 2016
- Type: Mini Oral Session
- Track: Advanced NSCLC
- Presentations: 1
-
+
MA07.05 - EUCROSS: A European Phase II Trial of Crizotinib in Advanced Adenocarcinoma of the Lung Harboring ROS1 Rearrangements - Preliminary Results (ID 4451)
11:30 - 11:36 | Author(s): E. Carcereny
- Abstract
- Presentation
Background:
ROS1 rearrangements are present in the tumors of 1-2% of patients with lung adenocarcinoma (LAD). This patient subgroup is characterized by non-smoking history and younger than average age compared to the overall NSCLC population. In a phase I trial the ALK/ROS1/MET inhibitor crizotinib has shown to be highly effective in these patients (NCT00585195). EUCROSS is a prospective phase II trial of the Lung Cancer Group Cologne in collaboration with the Spanish Lung Cancer Group to evaluate crizotinib in ROS1-positive LAD. Here, we present preliminary data on efficacy and safety.
Methods:
Patients with advanced LAD harboring ROS1 rearrangements as confirmed by central FISH were eligible for the trial irrespectively of the number of prior treatment lines. Patients received treatment with crizotinib 250 mg BID - doses were adapted for management of AEs. Trial design: Fleming’s single stage phase II design. Primary endpoint: ORR (95% CI, H~0~: ORR≤20% vs. H~1~: ORR>20%). Secondary endpoints: a.o. PFS, OS and safety. All efficacy endpoints were assessed by investigator’s RECIST v1.1 and will be analyzed by IRB at a later stage. Baseline tumor tissue was analyzed by DNA-sequencing to identify the translocation Partners of ROS1, to validate FISH results and to identify additional biomarkers for prediction of response. Data-cut off for this report was March 2016.
Results:
In total, 34 patients were enrolled in EUCROSS at the time of data cut-off. Twenty-nine patients were eligible for efficacy assessment. Tumor tissue of 20 of these patients was suitable for further sequencing - 18 were sequenced positive for ROS1 fusion. The fusion partners involved were CD74 (N=9;50%), EZR (N=4;22%), SCL34A2 (N=3;17%), TPM3 and SDC4(N=1;6% each). The investigator assessed ORR was 69% (95% CI, 49.1-84.3) in the overall trial population and 83% (95% CI, 67.7-94.2) in the ROS1-positive by sequencing population (N=18;P=0.324 for difference of ORR). Three patients (10.3%;95% CI, 3.6-26.4) exhibited primary progression, two of them were sequenced ROS1-negative. All patients were included in the safety population (N=34). Most common AEs irrespectively of relatedness or grade were visual disorders (N=16;48%), edema (N=14;41%), diarrhea (N=13;38%) and bradycardia (N=11;32%).
Conclusion:
Crizotinib is a highly effective and safe treatment in the subset of ROS1 rearranged NSCLC patients as determined by FISH and DNA-sequencing. Although, the number of patients with tissue available for sequencing was low at the time of data cut-off, sensitivity and specificity support sequencing as the potential new gold-standard for the identification of clinically relevant ROS1 gene-rearrangements.
Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.
-
+
P3.02b - Poster Session with Presenters Present (ID 494)
- Event: WCLC 2016
- Type: Poster Presenters Present
- Track: Advanced NSCLC
- Presentations: 2
- Moderators:
- Coordinates: 12/07/2016, 14:30 - 15:45, Hall B (Poster Area)
-
+
P3.02b-014 - Monitoring of T790M Mutation in Serum for Prediction of Response to Third Generation Inhibitors (ID 4097)
14:30 - 14:30 | Author(s): E. Carcereny
- Abstract
Background:
The emergence of T790M mutation (T790M) represents the main mechanism of acquired resistance (AR) to 1[st] and 2[nd] generation tyrosine kinase inhibitors (TKIs) in EGFR mutant patients (p). Recently, 3[rd] generation inhibitors (T790Mi) have demonstrated activity in EGFR mutant (mu) patients with AR to TKIs harboring T790M. Serum and plasma have been used as an alternative to tissue to detect both sensitizing EGFRmu and T790M. We evaluated if (1) T790M could be monitored along T790Mi therapy in p with baseline T790M in serum, (2) T790M loss could be correlated to clinical and radiographic response, and (3) T790M disappears soon in rapid responders.
Methods:
10 p out of a total of 15 T790M+p treated with T790Mi were selected according the baseline T790M+ in serum. Baseline characteristics, data on changes in T790M in serum; and radiographic and symptom changes along T790Mi therapy were collected. T790M in serum was detected using a PNA-locked nucleic PCR clamp-based technique. T790M was evaluated at baseline and at certain times after T790Mi initiation.
Results:
80% of the p were female and never smoker; 100% were adenocarcinoma, Caucasian, del19, and were treated with previous TKI, with a median (m) time to treatment failure of 11.25 months (mo) [range (r)1-19 mo]. P received 2 previous treatments (r1-6), 40% had a rebiopsy for T790M evaluation, had 3 metastatic sites (r1-6), and had a PS 1 in 70% of the cases. 5 p were evaluable for response with 2 SD and 3 PR as best response (BR) in the 1[st ]evaluation. 7 out of 9 p evaluable for clinical response, experienced an improvement in baseline symptoms as soon as 3 weeks (w) after starting T790Mi, only 1 p experienced an increase in pain, but not related to bone M1. T790M was lost in 80% of the p and it was not detected in serum at 3 or 6 w after the T790Mi initiation in 2 out of 4 and 4 out of 7 evaluable p, respectively.
Conclusion:
T790M detection can be lost early along T790Mi treatment. The decrease in symptom burden is seen in p with loss of T790M. PR and SD represent the BR in p with loss of T790M. The loss of T790M in the serum may be a marker of symptomatic and radiographic response to T790Mi. Future evaluation would demonstrate if the reappearance of T790M mutation in serum could be a marker of resistance to T790Mi.
-
+
P3.02b-047 - Co-Activation of STAT3 and YAP1 Signaling Pathways Limits EGFR Inhibitor Response in Lung Cancer (ID 4168)
14:30 - 14:30 | Author(s): E. Carcereny
- Abstract
Background:
EGFR tyrosine kinase inhibitors (TKIs) induce early activation of several signaling pathways. Interleukin-6 (IL-6) and signal transducer and activator of transcription 3 (STAT3) hyper-activation occur following EGFR TKI therapy in EGFR-mutant NSCLC cells. We explored the relevance of co-targeting EGFR, STAT3 and Src-YES-associated protein 1 (YAP1) signaling in EGFR-mutant NSCLC.
Methods:
We combined in vitro and in vivo approaches to explore whether concomitant activation of STAT3 and Src-YAP1 can limit the effectiveness of EGFR TKIs in EGFR-mutant NSCLC cells and xenograft models. In two cohorts of EGFR-mutant NSCLC patients, we examined messenger RNA (mRNA) gene expression within signaling pathways, leading to EGFR TKI resistance.
Results:
Gefitinib suppressed EGFR, ERK1/2 and AKT phosphorylation but increased STAT3 phosphorylation (pSTAT3-Tyr705). In EGFR mutant cells, gefitinib plus TPCA-1 (STAT3 inhibitor) abolished pSTAT3-Tyr705 but not the YAP1 phosphorylation on tyrosine 357 by Src family kinases (SFKs). The triple combination of gefitinib, TPCA-1 and AZD0530 (SFK inhibitor) ablated both STAT3 and YAP1 phosphorylation and was highly synergistic, according to the combination index. In two EGFR mutant xenograft mouse models, the triple combination of gefitinib, TPCA-1 and AZD0530 markedly and safely suppressed tumor growth. High levels of STAT3 or YAP1 mRNA expression were associated with worse outcome to EGFR TKI in 64 EGFR-mutant NSCLC patients. Median progression-free survival (PFS) was 9.6 (95%CI, 5.9-14.1) and 18.4 months (95%CI, 8.8-30.2) for patients with high and low STAT3 mRNA, respectively (p<0.001), (HR for disease progression, 3.02; 95% CI, 1.54-5.93; p=0.0013). Median PFS was 9.6 (95%CI, 7.7-15.2) and 23.4 months (95%CI, 13.0-28.1) for patients with high and low YAP1 mRNA, respectively (p=0.005), (HR for disease progression, 2.57; 95%CI, 1.30-5.09; p=0.0067). The results were similar in the validation cohort of 55 EGFR-mutant NSCLC patients treated with first-line EGFR TKI in the Department of Oncology of Shanghai Pulmonary Hospital.
Conclusion:
Our study reveals that STAT3 and Src-YAP1 signaling activation occurs following single EGFR TKI in EGFR-mutant NSCLC. STAT3 and YAP1 mRNA levels were significantly predictive of progression-free survival in the original as well as in the validation cohort of EGFR-mutant NSCLC patients. Co-targeting STAT3 and Src in combination with EGFR TKI could substantially improve survival.