Virtual Library

Start Your Search

J. Rodriguez-Canales



Author of

  • +

    MA04 - HER2, P53, KRAS and Other Targets in Advanced NSCLC (ID 380)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      MA04.07 - Impact of Major Co-Mutations on the Immune Contexture and Response of KRAS-Mutant Lung Adenocarcinoma to Immunotherapy (ID 6343)

      16:42 - 16:48  |  Author(s): J. Rodriguez-Canales

      • Abstract
      • Presentation
      • Slides

      Background:
      Activating mutations in the KRAS proto-oncogene define a prevalent and clinically heterogeneous molecular subset of lung adenocarcinoma (LUAC). We previously identified three major subgroups of KRAS-mutant LUAC on the basis of co-occurring genetic events in TP53 (KP), STK11/LKB1 (KL) and CDKN2A/B (KC) and reported that LKB1-deficient tumors exhibit a “cold” tumor immune microenvironment, with reduced expression of several immune checkpoint effector/mediator molecules, including PD-L1 (CD274). Here, we extend these findings and examine the clinical outcome of co-mutation defined KRAS subgroups to therapy with immune checkpoint inhibitors.

      Methods:
      We conducted a single-institution analysis of clinical and molecular data (PCR-based next generation sequencing of panels of 50, 134 or 409 genes) prospectively collected from patients enrolled into the MD Anderson Lung Cancer Moon Shot GEMINI database. KRAS-mutant LUAC were separated into KP, KL and K (wild-type for TP53 and STK11) groups. The log- rank test and Fisher’s exact test were used for comparison of progression-free survival (PFS) and objective response rate (ORR) respectively between the groups. In addition, automated IF-based enumeration of lymphocyte subsets was performed in 40 surgically resected LUAC (PROSPECT cohort) with available whole exome sequencing data.

      Results:
      Among 229 patients with KRAS-mutant LUAC who consented to the protocol we identified 35 patients with metastatic disease (17 KP, 6 KL, 12 K) that received immunotherapy with nivolumab (N=29), pembrolizumab (N=3), nivolumab/urelumab (N=1) and durvalumab/tremelimumab (N=2) and had robust clinical outcome data. There was no impact of different KRAS alleles (G12C/G12V/G12D) on PFS (P=0.6149, log-rank test) or ORR to immune checkpoint inhibitors (P=0.88, Fisher’s exact test, 2x3 contingency table). In contrast, co-mutation defined KRAS subgroups exhibited significantly different median PFS to immunotherapy (KP: 18 weeks, KL: 6 weeks, K: 16 weeks, P=0.0014, log-rank test). Objective responses were observed in 9/17 (52.9%) KP and 3/12 (25%) K tumors compared to 0/6 (0%) KL tumors (P=0.049, Fisher’s exact test, 2x3 contingency table). In the PROSPECT cohort of surgically resected LUACs with available whole exome sequencing data, somatic mutation in STK11 was associated with reduced intra-tumoral densities of CD3+ (P=0.0016), CD8+ (P=0.0125) and CD4+ (P=0.0036) lymphocytes.

      Conclusion:
      Mutations in STK11/LKB1 are associated with an inert tumor immune microenvironment and poor clinical response of KRAS-mutant LUAC to immune checkpoint blockade. The mechanism that underlies this phenotype and strategies to overcome it are under investigation. The impact of additional co-mutations on the immune profile and response of KRAS-mutant LUAC to immunotherapy is also being explored.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    OA20 - Immunotherapy and Markers (ID 401)

    • Event: WCLC 2016
    • Type: Oral Session
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      OA20.05 - The Influence of Neoadjuvant Chemotherapy, on Immune Response Profile in Non-Small Cell Lung Carcinomas (ID 5738)

      11:35 - 11:45  |  Author(s): J. Rodriguez-Canales

      • Abstract
      • Presentation
      • Slides

      Background:
      The clinical efficacy observed with PD-1/PD-L1 inhibitors in non-small cell lung carcinoma (NSCLC) has prompted to characterize the immune response in lung tumors treated with chemotherapy. Our goal was to determine the characteristics of immune microenvironment of localized, surgically resected, NSCLCs from patients who received and did not receive neo-adjuvant chemotherapy. Using multiplex immunofluorescence (mIF) and image analysis, we investigated PD-1/PD-L1 expression, and quantified tumor infiltrating lymphocytes (TILs) and tumor associated macrophages (TAMs).

      Methods:
      We studied formalin-fixed and paraffin embedded (FFPE) tumor tissues from 111 stage II and III resected NSCLC, including 61 chemonaïve (adenocarcinoma, ADC=33; squamous cell carcinoma, SCC=28) and 50 chemotherapy-treated (ADC=30; SCC=20) tumors. mIF was performed using the Opal 7-color fIHC Kit™ and analyzed using the Vectra™ multispectral microscope and inForm™ Cell Analysis software (Perkin Elmer, Waltham, MA). The markers studied were grouped in two 6-antibody panels: Panel 1, AE1/AE3 pancytokeratins, PD-L1 (clone E1L3N), CD3, CD4, CD8 and CD68; and Panel 2, AE1/AE3, PD1, Granzyme B, FOXP3, CD45RO and CD57.

      Results:
      Positive PD-L1 expression (>5%) in malignant cells (MCs) was detected in 48% (n=53/111) of NSCLCs. Overall, chemotherapy-treated tumors showed significantly higher percentages of MCs expressing PD-L1 (median, 18.2%) than chemo-naïve cases (median, 1.8%; P=0.033). Higher densities of inflammatory cells expressing granzyme B (P=0.036), CD57 (P=0.001) and PD-1 (P=0.016) were detected in chemotherapy-treated NSCLCs compared with chemo-naïve tumors. In contrast, lower densities of FOXP3-positive regulatory T cells were detected in chemotherapy-treated tumors when compared with chemo-naïve cases (P=0.032). Following chemotherapy ADCs exhibited significantly higher levels of CD57-positive cells (P<0.0001) and lower density of FOXP3-positive cells (P=0.002) than chemo-naïve tumors. Chemotherapy-treated SCCs demonstrated higher density of PD-1-positive cells than chemo-naïve tumors (P=0.004). In chemotherapy-treated cancers, lower levels of CD4 helper T positive cells and tumor associated macrophages (TAMs) CD68-positive cells were associated with worse overall survival (OS; P=0.04 and P=0.005, respectively) in univariate analysis. In chemotherapy-treated ADC patients, lower levels of CD68-positive (P=0.010) and higher levels of FOXP3-positive cells correlated with worse OS (P=0.044).

      Conclusion:
      We developed a robust mIF panel of 10 markers to study inflammatory cells infiltrates in FFPE NSCLC tumor tissues. Chemotherapy-treated NSCLCs exhibited higher levels of PD-L1 expression and T cell subsets compared to chemo-naïve tumors, suggesting that chemotherapy activates specific immune response mechanisms in lung cancer. (Supported by CPRIT MIRA and UT Lung SPORE grants, and MD Anderson Moon Shot Program).

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.