Virtual Library

Start Your Search

I. Tunali



Author of

  • +

    P1.01 - Poster Session with Presenters Present (ID 453)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Epidemiology/Tobacco Control and Cessation/Prevention
    • Presentations: 1
    • +

      P1.01-041 - Quantitative Imaging Features Predict Response of Immunotherapy in Non-Small Cell Lung Cancer Patients (ID 5729)

      14:30 - 14:30  |  Author(s): I. Tunali

      • Abstract
      • Slides

      Background:
      Although immunotherapy has revolutionized the field of cancer treatment, response rates are only ~20% in non-small cell lung cancer (NSCLC) patients and cost of this therapy is high. Predictive biomarkers are needed to identify patients likely to benefit. Converting digital medical images into high-dimensional data (‘Radiomics’) contains information that reflects underlying pathophysiology and that can be revealed via quantitative analyses. We extracted radiomic imaging features from baseline CT scans (prior to initiation of immunotherapy) and identified features that predict response to immunotherapy in NSCLC patients. This work is an initial test of the hypothesis that radiomic data may predict who will respond favorably and who will not.

      Methods:
      We curated a subset of data and images from 13 different institutional immunotherapy clinical trials. Patients were stage III/IV NSCLC and received PD-1, PD-L1, or doublet checkpoint inhibitors. All target nodules were identified on the CT prior scan prior to initiation of immunotherapy. RECIST guidelines 1.1 were used to measure patient response from baseline to last follow-up scan. Based on last follow-up, 43 patients had progressive disease (PD) and 28 patients with partial response (PR) or complete response (CR). Since we focused on extreme responses, stable disease (SD) patients were not included in the current analyses. We extracted 219 radiomic features including size, shape, location, and texture information from a total of 210 target nodules (lung, lymph nodes, or other). Backward-elimination analyses were utilized to generate parsimonious radiomic models associated with objective responses (PD vs. PR/CR) and post estimation computed performance statistics.

      Results:
      There were no significant differences for the patient characteristics between patients with PD vs. CR/PR. Analysis of the radiomic features for all target nodules to differentiate PD patients vs. PR/CR patients resulted in a final model containing 2 features that provided an AUROC of 0.64 (95% CI 0.56–0.72). When we analyzed features for only lung target nodules, we identified a final model with 4 features that produced an AUROC of 0.79 (95% CI 0.68–0.89). When we analyzed the imaging features for lymph node target nodules, we found that a final model with 1 feature yielded an AUROC of 0.67 (95% CI 0.51–0.82).

      Conclusion:
      Radiomic features of lung target nodules have better performance statistics for predicting response to immune therapies compared to target nodules from other organ sites. With this model, cutoffs can be chosen to reduce non-responders with high confidence. Change feature analyses following therapy are underway.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.