Virtual Library

Start Your Search

T. De Pas



Author of

  • +

    ORAL 33 - ALK (ID 145)

    • Event: WCLC 2015
    • Type: Oral Session
    • Track: Treatment of Advanced Diseases - NSCLC
    • Presentations: 1
    • +

      ORAL33.05 - Pooled Analysis of CNS Response to Alectinib in Two Studies of Pre-Treated ALK+ NSCLC (ID 1219)

      17:28 - 17:39  |  Author(s): T. De Pas

      • Abstract
      • Presentation
      • Slides

      Background:
      The central nervous system (CNS) is a frequent site of progression in ALK+ NSCLC patients treated with crizotinib, thus good CNS efficacy is of crucial importance for new ALK inhibitors. Two recent phase II studies examined the efficacy and safety of alectinib in patients with ALK+ NSCLC who progressed after crizotinib; data from both studies were pooled to further examine the efficacy of alectinib in the CNS.

      Methods:
      Both phase II, single-arm, multicenter studies enrolled ALK+ NSCLC patients previously treated with crizotinib. One study was conducted in North America only (NP28761; NCT01871805), the other was global (NP28673; NCT01801111). All patients received 600mg oral alectinib twice daily. A primary endpoint of both studies was objective response rate (ORR) by independent review committee (IRC) and key secondary endpoints included CNS ORR by IRC and CNS duration of response (DOR). Response was determined according to RECIST v1.1. All patients underwent imaging at baseline to assess CNS metastases.

      Results:
      The pooled analysis population comprised 225 patients (n=87 from NP28761 and n=138 from NP28673); baseline characteristics were similar to each study population, with most patients being non-smokers, <65 years old with ECOG performance status 0/1. Median follow-up was 27.7 weeks. Fifty patients had measurable CNS disease at baseline (MD) while a further 85 had non-measurable disease (NMD) at baseline; both groups together (M+NMD) comprised 135 patients, 60% of the overall study population. In the MD group, 34 patients (68%) had received prior radiotherapy, but 24 of them had completed that radiotherapy >6 months prior to starting alectinib. For the M+NMD group, 94 patients (70%) had received prior radiotherapy, with 55 completing this >6 months prior to starting alectinib. In the MD group, 30/50 patients had a CNS response (60.0%; 95% CI 45.2–73.6%), with 7 complete responses (CR; 14.0%) and a CNS DCR of 90.0% (78.2–96.7%). In the M+NMD group, 22 additional patients had a CR (29/135; 21.5%), giving a CNS ORR of 38.5% (30.3–47.3%), with a CNS DCR of 85.2% (78.1–90.7%). Complete responses were seen in patients with and without prior radiotherapy. Median CNS DOR after only 17% of events in both groups was 7.6 months (5.8–7.6) in the MD group (n=30) and 7.6 months (5.8–10.3) in the M+NMD group (n=52), which is similar to the systemic DOR reported in both studies (Ou et al, ASCO 2015; Gandhi et al, ASCO 2015). Tolerability was also similar to the overall study population.

      Conclusion:
      Alectinib showed promising efficacy in the CNS in ALK+ NSCLC patients previously treated with crizotinib, achieving a complete response rate of 22% and a DCR of 85%, irrespective of prior radiotherapy. The CNS response was sustained for an equivalent duration to the systemic response, suggesting that alectinib could provide an effective treatment for patients with ALK+ NSCLC while actively targeting CNS metastases. The ongoing phase III clinical studies will assess the systemic and CNS efficacy of alectinib versus crizotinib as front-line therapy for ALK+ NSCLC patients.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    ORAL 34 - Quality/Survival/Prognosis in Localized Lung Cancer (ID 153)

    • Event: WCLC 2015
    • Type: Oral Session
    • Track: Treatment of Localized Disease - NSCLC
    • Presentations: 1
    • +

      ORAL34.03 - Prognostic Factors in Early Stage NSCLC: Analysis of the Placebo Group in the MAGRIT Study (ID 24)

      17:07 - 17:18  |  Author(s): T. De Pas

      • Abstract
      • Presentation
      • Slides

      Background:
      The MAGRIT study was a worldwide, multicenter, phase-3 double-blind, randomized trial evaluating efficacy of the MAGE-A3 Cancer Immunotherapeutic in resected non-small cell lung cancer (NSCLC) (www.clinicaltrials.gov NCT00480025). We examined baseline patient and disease characteristics associated with overall survival (OS) and disease-free survival (DFS) among patients assigned to placebo.

      Methods:
      Study participants were ≥18 years, with histologically proven, MAGE-A3-positive stage IB, II or IIIA NSCLC (AJCC 6.0). Participants had undergone complete anatomical resection of the tumor (lobectomy or pneumectomy) with mediastinal lymph node (LN) dissection or sampling according to standard of care. Up to four cycles of platinum-based adjuvant chemotherapy were allowed. Cox regression models were used to explore characteristics that could predict DFS and OS. Factors statistically significant in univariate analysis (p<0.05) were included in multivariate models using a stepwise approach (p<0.05 to enter/remain in the model).

      Results:
      There were 757 placebo patients in the total treated population; median age 63 years, 76% male, 53% with squamous cell carcinoma (SCC), 34% with adenocarcinoma, 98% with performance status 0-1, 52% had received adjuvant chemotherapy.In univariate analyses, SCC, lower N-category and earlier disease stage were associated with improved DFS. Lower N-category, earlier stage and smaller tumor size were associated with improved OS. In multivariate analysis, N-category (HR 1.34, 95%CI [1.16-1.55]) and histological type (HR for SCC vs non-SCC 0.64, 95%CI [0.51-0.81]) remained significant for DFS. N-category (HR 1.47, 95%CI [1.21-1.79]) and tumor size (HR by unit increase 1.08, 95%CI [1.01-1.15]) did so for OS. No association was found between DFS or OS and age, gender, race, region, baseline performance status, quantitative MAGE-A3 expression, chemotherapy administration or type of chemotherapy, smoking status or type of LN sampling (minimal/systematic). Among patients with SCC, univariate analysis identified increased number of chemotherapy cycles and operative technique (pneumectomy) as associated with improved DFS (p<0.05). Only operative technique remained in the multivariate model. When including N-category (p<0.10 in univariate analysis) in the multivariate model, N-category and number of chemotherapy cycles were also selected. Lower N-category and smaller tumor size were significantly associated with improved OS, in univariate and multivariate analyses. Among patients with non-SCC, univariate analysis identified younger age, being female, lower N-category and earlier disease stage with improved DFS, and lower N-category, earlier disease stage and region (East Asia) with improved OS. N-category and gender, and N-category and region remained significant in the multivariate analysis for DFS and OS, respectively.

      Conclusion:
      This is the first prognostic factor analysis in resected NSCLC performed on data from a large, prospective randomized study. It highlighted that in terms of DFS, SCC patients have a better prognosis than non-SCC patients. N-category plays a major role in determining prognosis. Operative technique (pneumectomy), number of chemotherapy cycles (SCC) and gender (non-SCC) are also associated with outcome. Variables predictive for OS are N-category and tumor size (all) and region (non-SCC). These results confirm retrospective studies done within the context of TNM classification, but add that histopathology subtype is a strong determinant for DFS in resected NSCLC.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    ORAL 38 - Liquid Biopsies (ID 147)

    • Event: WCLC 2015
    • Type: Oral Session
    • Track: Biology, Pathology, and Molecular Testing
    • Presentations: 1
    • +

      ORAL38.07 - Quantification of EGFR Mutations in Plasma of NSCLC Patients: An Early Predictor of Clinical Response to Tyrosine Kinase Inhibitors (ID 2242)

      17:50 - 18:01  |  Author(s): T. De Pas

      • Abstract
      • Presentation
      • Slides

      Background:
      As DNA analytical methods have become more sensitive, attempts to develop accurate clinical tests to assess tumor mutation status by means of patient plasma samples are now being pursued. The potential to accurately quantify EGFR mutations in plasma from non-small cell lung cancer (NSCLC) patients would enable more rapid and more frequent analyses to assess disease status; however, the utility of such analyses for clinical purposes has only recently started to be explored.

      Methods:
      Plasma samples were obtained from 69 NSCLC patients with EGFR-mutated tumors and 21 negative control cases. EGFR mutations in plasma were analyzed by a standardized allele-specific polymerase chain reaction (PCR) test and ultra-deep next generation sequencing (NGS). A semi-quantitative index (SQI) was derived from dilutions of known EGFR mutation copy numbers. Clinical responses were evaluated by RECIST 1.1 criteria and expressed as percent tumor shrinkage.

      Results:
      The sensitivity and specificity of the PCR test and NGS assay in plasma versus tissue were 72% versus 100%, and 74% versus 100%, respectively. Quantitative indices by the PCR test and NGS were significantly correlated (P<0.001). EGFR testing at baseline and serially at 4–60 days during TKI therapy revealed a progressive decrease in SQI , starting from day 4, in 95% of cases. The rate of SQI decrease correlated with percent tumor shrinkage at 2 months (P<0.0001); at 14 days it was more than 50% in 70% of patients (rapid responders) (Fig.1A-B). In 2 patients with slow response (Fig.1B), an early increase in the circulating levels of the T790M mutation was observed. These patients were defined as early resistant (Fig.1C). No early T790M mutations were seen in plasma samples of rapid responders, suggesting that slow responders are more prone to develop early resistance.

      Conclusion:
      Quantification of EGFR mutations from plasma with a standardized PCR test is feasible. To our knowledge, this is the first study showing a strong correlation between the EGFR SQI during therapy and clinical response with relevant implications for patient management. With the strong correlation between EGFR SQI in plasma and clinical outcome, this study opens the way to prospectively design clinical trials to confirm these data and evaluate the diagnostic value of this test. Figure 1



      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    ORAL 40 - Biology 1 (ID 154)

    • Event: WCLC 2015
    • Type: Oral Session
    • Track: Thymoma, Mesothelioma and Other Thoracic Malignancies
    • Presentations: 1
    • +

      ORAL40.07 - Xpo1 Inhibition: A Promising Therapeutic Strategy in Thymic Epithelial Tumors (ID 1230)

      17:50 - 18:01  |  Author(s): T. De Pas

      • Abstract
      • Presentation
      • Slides

      Background:
      Growing evidence suggests that nuclear–cytoplasmic transport is frequently dysregulated in cancer cells, and is involved in promoting carcinogenesis, cell survival, drug resistance and tumor progression. In particular, enhanced nuclear export is one mechanism by which malignant cells inactivate tumor suppressor proteins (TSPs). Inhibition of XPO1 (CRM1), the main karyopherin involved in the nuclear export of TSPs, restores nuclear localization and function of TSPs in several preclinical models. Selinexor(KPT-330) is an XPO1 inhibitor being tested clinically in solid tumors and hematological malignancies that showed some activity in patients with thymic epithelial tumors (TETs). Here, we describe the activity of selinexor in preclinical models of TETs.

      Methods:
      Thymoma (IU-Tab1, T1682), thymic carcinoma (Ty82, T1889, MP57) and immortalized normal thymic epithelial cells (TEC84) treated with selinexor or vehicle were assayed by CellTiter-Glo and flow cytometry. Western blot analysis of nuclear and cytoplasmic protein fractions and immunofluorescence assays were used to study the cellular sublocalization of XPO1 cargoes before and after treatment. The effect of selinexor on cell migration was determined using a wound-healing assay. A selixinor-resistant cell line was generated by growing selinexor-sensitive IU-Tab1 cells at increasing concentrations of the drug. Mutational status and copy number of the XPO1 gene was assessed by Q- PCR and Sanger sequencing.

      Results:
      All TET cell lines were sensitive to selinexor (IC~50~ 90-250 nM) with the exception of T1682 (thymoma type B), which showed intrinsic drug resistance (IC~50~ > 1000 nM). In the sensitive cell lines, selinexor treatment induced G1 (MP57) or G2 (IU-Tab1, Ty82) cell-cycle arrest at 24 hours, and induced apoptosis 2-5 fold over untreated cells by 72 hours. The cytotoxic effects of selinexor were not observed in immortalized normal TEC84 cells at nanomolar concentrations, and required higher concentrations (IC~50 ~800nM) to induce a cytostatic effect. Drug treatment led to increased nuclear concentrations of several TSPs involved in cell cycle regulation (e.g. p21, p27), genomic stability (p53) and induction of apoptosis (FOXO3a) and also reduced the total cellular expression of the oncogenic protein NF-kB. These results were confirmed with siRNA knockdown of XPO1. In addition,selinexor treatment impaired tumor cell migration and had cytotoxic synergistic effect in combination with doxorubicin or etoposide in T1889 and IU-Tab1 cell lines, increasing nuclear accumulation of the XPO1 cargo protein, Topoisomerase IIα. Furthermore, we demonstrated that selinexor-resistant cell line has similar growth rates to their parental cells, however overexpress XPO1 due to gene amplification, confirming the importance of aberrant XPO1 activity in TET survival.

      Conclusion:
      Our data show the importance of XPO1 in TETs biology and demonstrate activity of selinexor in preclinical models, further supporting the planned Phase II trial in patients with TETs.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.