Virtual Library

Start Your Search

O. Lin



Author of

  • +

    MINI 22 - New Technology (ID 134)

    • Event: WCLC 2015
    • Type: Mini Oral
    • Track: Biology, Pathology, and Molecular Testing
    • Presentations: 1
    • +

      MINI22.02 - Clinically Adoption of MSK-IMPACT, a Hybridization Capture-Based next Generation Sequencing Assay, for the Assessment of Lung Adenocarcinomas (ID 2881)

      16:50 - 16:55  |  Author(s): O. Lin

      • Abstract
      • Presentation
      • Slides

      Background:
      Mutation analysis plays a central role in the management of lung adenocarcinomas (LUAD). The use of multiple single gene or mutation specific assays, broadly adopted in many laboratories to detect clinically relevant genomic alterations, often leads to delays if sequentially performed, tissue exhaustion, incomplete assessment and additional biopsy procedures. Comprehensive assays using massively parallel “next-generation” sequencing (NGS) offer a distinct advantage when addressing the increased testing needs of genotype-based therapeutic approaches. Here we describe our experience with a 410 gene, clinically validated, hybrid-capture-based NGS assay applied to testing of LUAD.

      Methods:
      Consecutive LUAD cases submitted for routine mutation analysis within a 1 year period were reviewed. Unstained slides of formalin fixed, paraffin embedded tissue were received for each case (range 15-20 slides/case). Corresponding H&E stained slides were reviewed and cell counts were performed in a subset of cases with limited material to establish minimal tissue requirements. Testing was performed by a laboratory-developed custom hybridization-capture based assay (MSK-IMPACT) targeting all exons and selected introns of 410 key cancer genes (J Mol Diagn 17:251-264, 2015). Barcoded libraries from tumor / normal pairs were captured and sequenced on an Illumina HiSeq 2500 and analyzed with a custom analysis pipeline.

      Results:
      A total of 469 specimens were received for comprehensive testing (98 cytology samples, 239 needle biopsies, 132 large biopsies/resections) of which 93% (436/469) were successfully tested. Thirty four cases (7%, 34/469) failed due to very low tumor content or low DNA yield. Cell counts for failed samples averaged 239 cells / slide (range 10-270) while all successfully tested had over 1,000 cells / slide each. Failure rate was similar for cytologies and biopsies. An average of 10 genomic alterations were detected per patient (range 1-96). The most frequently mutated genes were TP53, EGFR, KRAS, KEAP1 and STK11. Copy number gains of NKX2-1 and EGFR genes and CDKN2A loss were most common. EGFR mutations and ALK fusions were detected in 28% and 4% of cases, respectively. Among the 299 EGFR / ALK WT cases, MSK-IMPACT uncovered targetable genomic alterations that would have remained undetected through focused EGFR/ALK testing alone. These included fusions in RET (10) and ROS1 (13), mutations in ERBB2 (11) and BRAF (19) and amplifications in MET (12, unrelated to EGFR), MDM2 (26) and CDK4 (20) among others. The higher than expected rates of RET and ROS1 fusions are related to enrichment of previously tested cases known to be negative for other driver alterations.

      Conclusion:
      Comprehensive hybrid-capture based NGS assays such as MSK-IMPACT are an efficient testing strategy for LUAD across sample types. This upfront broad approach enables more optimal patient stratification for treatment by targeted therapeutics.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.