Virtual Library

Start Your Search

P. Alberts



Author of

  • +

    P2.04 - Poster Session/ Biology, Pathology, and Molecular Testing (ID 234)

    • Event: WCLC 2015
    • Type: Poster
    • Track: Biology, Pathology, and Molecular Testing
    • Presentations: 1
    • +

      P2.04-053 - Patient-Derived Xenograft Studies Suggest FGFR1 Amplification Is Insufficient to Predict Response to FGFR Inhibitors in Lung SqCC (ID 3067)

      09:30 - 09:30  |  Author(s): P. Alberts

      • Abstract
      • Slides

      Background:
      FGFR1 amplification has been reported in 16%-20% of lung squamous cell carcinoma (SqCC). Early phase clinical trials with anti-FGFR small molecule inhibitors are in progress. It remains unclear whether genomic changes involving FGFR1 is associated with a dependency in FGFR-driven oncogenic activity that could be inhibited with pharmacologic agents. We evaluated a pan-FGFR inhibitor (BGJ398) in four SqCC patient-derived xenograft (PDX) models with amplification of the FGFR1 gene. 

      Methods:
      FGFR1 gene copy changes were assessed by fluorescence in-situ hybridization. PDX models were established by implanting surgical resected tumor fragments into the subcutaneous tissue of non-obese diabetic severe combined immune deficient (NOD-SCID) mice. Protein and mRNA expression levels were assessed by immunohistochemistry/western blot and RT-qPCR, respectively.

      Results:
      FGFR1 amplification was observed in 13 of 60 (22%) SqCC patient tumors, with all amplified tumors forming PDX. PDX models with FGFR1 gene amplification displayed higher levels of mRNA and protein compared to non-amplified tumor, excluding polysomy cases. One model demonstrated an average of 50% decrease in tumor volume in the BGJ398 treated group compared to control group, 21 days post-treatment. This model also expressed high FGFR1 and high cMYC protein. BGJ398-resistant PDX models included one model with high FGFR1 but low cMYC protein levels, and two models with low FGFR1 and high cMYC protein levels.

      Conclusion:
      The lack of growth arrest to a pan-FGFR small molecule inhibitor in the 4 PDX models evaluated suggests that FGFR1 amplification alone was not a sufficient predictive marker for pan-FGFR1 inhibitor activity. FGFR1 protein and MYC protein are putative markers.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.