Virtual Library
Start Your Search
P. De Jong
Author of
-
+
MINI 36 - Imaging and Diagnostic Workup (ID 163)
- Event: WCLC 2015
- Type: Mini Oral
- Track: Screening and Early Detection
- Presentations: 1
-
+
MINI36.03 - Multi-Nodularity in Baseline CT Lung Cancer Screening and Relationship with Lung Cancer Probability (ID 1392)
18:40 - 18:45 | Author(s): P. De Jong
- Abstract
Background:
Currently, there is little known about prevalence of multi-nodularity in a high risk screening population. Radiologists often find more than one nodule per screenee. Whether the number of lung nodules plays a role in the probability of lung cancer, remains still largely unknown.
Methods:
In the Dutch-Belgian randomized lung cancer screening trial (NELSON), launched in 2003, participants were selected with at least one non-calcified nodule at baseline. The NELSON trial was approved by the Ministry of Health and the ethics board of each participating center. All participants gave written informed consent. The per-participant number of baseline nodules was determined. The probability of lung cancer was compared for categories based on the number of baseline nodules, using chi-square testing. Lung cancer diagnosis was confirmed by histology. Nodules were classified as benign if they did not show growth for up to six years after baseline.
Results:
3,392 participants (84,4% male, median age 58 years, median pack years 37,9) with 7,258 nodules at baseline CT screening were included. Of these 3,392 screenees, 1,746 (51,5%) had one nodule, 800 (23,6%) had two nodules, 354 (10,4%) had three nodules, 191 (5,6%) had four nodules, and 301 (8,9%) had five or more nodules. The probability of lung cancer was 61/354 (3.5%) in subjects with one nodule, 37/800 (4.6%) in those with two nodules, 17/354 (4.8%) for three nodules, 12/191 (6.3%) for four nodules and 10/301 (3.3%) when a participant had over four nodules (p=NS). In the baseline screening round, 62 subjects had a malignant nodule. Lung cancer diagnosis was made in the nodule with the largest volume in 60/62 (96.8%) cases. Overall, lung cancer was diagnosed in 137/3,392 subjects (4.0%) in whom nodules were found at baseline. Mean nodule count in screened subjects with only benign nodules was 2.1±1.8, compared to 2.3±2.2 in those with a malignant nodule.
Conclusion:
At baseline CT lung cancer screening, nearly half of screened participants with lung nodules have more than one lung nodule. Nodule count did not have predictive value in the determination of lung cancer probability in lung cancer screening participants. In the first screening round, of all detected nodules per screenee, lung cancer was detected most frequently in the nodule with the largest volume.
-
+
ORAL 09 - CT Screening - New Data and Risk Assessment (ID 95)
- Event: WCLC 2015
- Type: Oral Session
- Track: Screening and Early Detection
- Presentations: 1
- Moderators:J. Mulshine, J.K. Field
- Coordinates: 9/07/2015, 10:45 - 12:15, Mile High Ballroom 2a-3b
-
+
ORAL09.02 - Results of the Fourth Screening Round of the NELSON Lung Cancer Screening Study (ID 1354)
10:56 - 11:07 | Author(s): P. De Jong
- Abstract
- Presentation
Background:
Although screening can reduce lung cancer (LC) mortality, the optimal screening strategy (e.g. numbers of screening rounds, screening interval) is unclear. The use of different screening intervals in the NELSON study is unique and makes it possible to investigate how the screening test performances (e.g. lung cancer detection rate, false positive rate) and characteristics of screen-detected lung cancers might change. This study describes the results of a fourth screening round that took place 2.5 years after the third round.
Methods:
The Dutch-Belgian randomized-controlled Lung Cancer Screening Trial (NELSON) aims to investigate whether low-dose CT screening would reduce LC mortality by at least 25% relative to no screening after ten years of follow-up. Therefore, screen group participants were screened four times: at baseline and year 1, 3, and 5.5. Screening test results were classified as negative, indeterminate, or positive based on nodule presence, volume (in case of new nodules) and volume doubling time (in case of previous existing nodules). Participants with an indeterminate test result underwent follow-up screening to classify their final screening test result as positive or negative. Participants with a positive scan result were referred to a pulmonologist for a diagnostic work-up. For this study, we included only participants who had attended all four screening rounds (n=5279). Epidemiological, radiological and clinical characteristics of lung cancers detected in the fourth round were compared with those of the lung cancers detected in the first three rounds. In addition, the risk for lung cancer detection in the fourth round (5.5 year risk) was quantified for subgroups.
Results:
In round four, 46 lung cancers were detected; 58.7% were diagnosed at stage I, 15.2% at stage II and 23.8% at stage III/IV. Adenocarcinomas were correlated with better cancer stage distribution, while small-cell carcinomas (SCLC) were associated with higher stage distribution (p=0.064). False positive rate after positive screening was 59.04% (62/105) and the overall false positive rate of the fourth round was 1.15% (62/5383). Relative to the results of the first three rounds, the LC detection rate was lower (0.80 vs 0.80-1.1) and LC was detected at a more advanced stage (23.8% vs 8.1%). In the fourth round more squamous-cell carcinomas (21.7% vs. 16.3%), SCLC (6.5% vs 3.8%) and bronchioloalveolar carcinomas (8.7% vs 5.3%) were detected. No large-cell carcinomas, large-cell neuroendocrine carcinomas or carcinoids were found in the fourth round. Screening results of the first three rounds led to formation of subgroups with significantly different probability of screening result in the fourth round: participants with previous exclusively negative results had a probability of 97.2% of negative screen compared to participants with ≥1 indeterminate or positive screen (94.6% and 87.1%) in the first three rounds. The risk of detecting LC in the fourth round also differed between these subgroups: exclusively negative results (<1.0%) and any time ≥1 indeterminate or positive result (1.5-1.7%).
Conclusion:
The LC detection rate after the third screening round was slightly lower and the stage distribution of screen-detected lung cancers in the fourth round was slightly less favorable. However, the differences seem limited.
Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.