Virtual Library

Start Your Search

H. Van Tinteren



Author of

  • +

    P3.08 - Poster Session 3 - Radiotherapy (ID 199)

    • Event: WCLC 2013
    • Type: Poster Session
    • Track: Radiation Oncology + Radiotherapy
    • Presentations: 1
    • +

      P3.08-014 - Very high radiation dose escalation in NSCLC does not lead to unexpected toxicity: A planned toxicity analysis of the PET-boost study (NCT01024829) (ID 1925)

      09:30 - 09:30  |  Author(s): H. Van Tinteren

      • Abstract

      Background
      Locoregional failure rates are high in patients with locally advanced non-small cell lung cancer (NSCLC), even when using concurrent chemoradiation. Recurrences have been shown to be predominantly located in the primary tumor, more specifically in areas with a high FDG-uptake that can be identified on a pre-treatment FDG PET-CT scan. Improved tumor control could be accomplished by dose escalation. The PET-boost trial is an ongoing randomized phase II trial investigating radiation dose-escalation using an individualized, accelerated schedule either to the entire primary tumor or to the regions of high FGD-uptake (>50% SUVmax) within the primary tumor. We present a preliminary analysis of the acute toxicity of the first 45 patients.

      Methods
      Patients with NSCLC stage IB-III with a primary tumor diameter ≥4 cm are eligible. Patients are treated with concurrent or sequential chemoradiation or radiotherapy only. Permitted regimens are: daily dose cisplatin (only in concurrent chemoradiation) or cisplatin-etoposide in concurrent and sequential chemoradiation. Eligible patients receive a planning PET-CT scan on which an IMRT plan is constructed up to a dose of 66 Gy in 24 fractions of 2.75 Gy to the involved lymph nodes and the primary tumor. In patients where normal tissue constraints allow further dose escalation to the primary tumor up to a minimal dose of 72 Gy of ≥ 3 Gy-fractions, 2 plans (with equal mean lung dose) are constructed: either giving the integrated boost to the entire primary tumor (Arm A) or redistributing the boost to areas of high FGD-uptake (>50% SUVmax) in the tumor (Arm B), up to a maximal prescribed dose of 129.6 Gy in 24 fractions of 5.4 Gy. All pts are followed according to study protocol. Toxicity is scored according to the CTCv3.0 criteria. Primary endpoint of this study is local progression-free survival at 1 year. Secondary endpoints are acute and late toxicity, overall survival and quality of life.

      Results
      Between 2010 and 2013 71 patients were registered of which 45 were randomized: 22 pts to arm A and 23 to arm B. In both arms, median follow up was 13.3 months. Patient and tumor characteristics were equally distributed in both arms. Thirty-seven patients (82.2%) had stage III lung cancer. Concurrent chemoradiotherapy was given in 25 patients (55.6%). Mean GTV was 154.2 cm ³ (range 26-416 cm³). Mean fraction size in both arms was 3.46 Gy (range 3.0-5.4 Gy). Baseline toxicity grade 3 occurred in 4 patients (8.8%) consisting of dyspnea in 1 patient, cough in 2 patients and renal dysfunction in 1 patient. During treatment grade ≥3 hematologic toxicity was seen in 6 patients (13.3%), whereas 2 patients (4.4%) suffered from cardiac toxicity grade 4 (ischemia/infarction). Seven patients (15.6%) had grade ≥3 dysphagia. 82.2% of the patients finished treatment according to study protocol. Radiation treatment was completed in all patients. Seven patients have died of which 3 (6.6%) due to pulmonary hemorrhage.

      Conclusion
      This first toxicity analysis of the multicenter phase II randomized PET-boost trial at a median follow up of 13.3 months did not reveal any unexpected acute or late toxicity.