Virtual Library
Start Your Search
C. Eswar
Author of
-
+
P3.08 - Poster Session 3 - Radiotherapy (ID 199)
- Event: WCLC 2013
- Type: Poster Session
- Track: Radiation Oncology + Radiotherapy
- Presentations: 1
- Moderators:
- Coordinates: 10/30/2013, 09:30 - 16:30, Exhibit Hall, Ground Level
-
+
P3.08-012 - I-START Trial: A UK phase I/II trial of isotoxic accelerated radiotherapy in locally advanced non-small cell lung cancer (ID 1575)
09:30 - 09:30 | Author(s): C. Eswar
- Abstract
Background
Approximately 35,000 people die from lung cancer each year in the UK, the majority from non-small cell lung cancer (NSCLC). Patients with locally advanced (LA) NSCLC are often not suitable for chemotherapy or combined chemo-radiotherapy treatment because of patient or tumour factors. In these cases radical radiotherapy alone is used. Increased radiation dose may improve both local tumour control and survival. The radiotherapy dose is limited by surrounding organs, which include the lungs, heart, spinal cord and oesophagus. The maximum radiotherapy dose that can safely be delivered to the oesophagus is not known. The I-START trial was therefore developed, on behalf of the UK National Cancer Research Institute Lung Clinical Studies Group, to establish oesophageal radiation dose limits and to investigate the feasibility and effectiveness of a novel approach to dose escalation in LA-NSCLC. The study is funded by Cancer Research UK (C25518/A11535), sponsored by Velindre NHS Trust and coordinated by the Wales Cancer Trials Unit.Methods
Patients with histologically or cytologically confirmed stage II to IIIb NSCLC, suitable for radical radiotherapy, are eligible for the trial. Enrolled patients will receive 20 fractions of radiotherapy over 4 weeks. The trial is split into two phases: Phase I: To establish the maximum tolerated (MTD) dose of radiotherapy to the oesophagus in patients where the oesophagus overlaps with the planning target volume (PTV). Phase I patients will be split into 2 groups depending on the length of the oesophagus lying within the PTV (Group 1A is where the overlap ≤6.5cm and Group 1B is where the overlap >6.5cm). Cohorts of 6 or 12 patients are recruited to both groups at sequentially increasing dose levels (58, 61, 63, 65Gy). Progression to the next oesophageal dose level will depend on the number of patients in a cohort with grade 3 or 4 acute oesophagitis, or other grade 3 or 4 toxicity, occurring up to 2 months after radiotherapy. Once the MTD to the oesophagus is established for each group, all participants will follow the Phase II protocol with the determined oesophageal dose limit. Phase II: Patients will receive a maximum of 65Gy in 20 fractions and the dose prescribed will be the highest dose achievable without exceeding defined safe dose limits for organs at risk. Where the oesophagus does not overlap with the PTV, patients can immediately be treated in Phase II, whereas patients whose oesophagus overlaps with the PTV can only be entered into Phase II once Phase I is complete, i.e. the MTD to the oesophagus has been established. The primary outcome of Phase II is the toxicity rate (grade 3 or 4) at 3 months. The I-START trial will determine whether this novel method of increasing the radiotherapy dose in patients with NSCLC patients is tolerable, safe and effective. If the results are positive, then this new treatment may be compared against the best currently available standard treatment in a future larger randomised (Phase III) trial.Results
Not applicable.Conclusion
Not applicable.