Virtual Library
Start Your Search
S. Savarimuthu
Author of
-
+
P3.01 - Poster Session 3 - Cancer Biology (ID 147)
- Event: WCLC 2013
- Type: Poster Session
- Track: Biology
- Presentations: 1
- Moderators:
- Coordinates: 10/30/2013, 09:30 - 16:30, Exhibit Hall, Ground Level
-
+
P3.01-011 - Heterogeneity in tumour content and necrosis in primary lung cancers: Implications for molecular analysis (ID 3326)
09:30 - 09:30 | Author(s): S. Savarimuthu
- Abstract
Background
Lung adenocarcinoma (AC) and squamous cell carcinoma (SCC) tumours have a large variance in tumour cell content. This heterogeneity is a concern for genomic studies, as it is difficult to distinguish mutational differences between tumour and non-tumour if low percentage tumour is used for analysis. In addition to this, tumour samples are affected by the amount of necrosis present, as the overall number of viable cells is decreased. We assessed tumour and necrotic content in lung tumour specimens from AC and SCC patients and aimed to identify possible implications for the suitability of these samples in molecular characterisation studies using next generation sequencing technology.Methods
Lung tissue specimens were collected during the period of 1990 to 2013 from patients at The Prince Charles Hospital who consented to donate their surgically resected lung tissues for research. Tissues were macroscopically dissected, snap frozen in liquid nitrogen and stored at -80°C. A tissue section was taken and stained with haematoxylin and eosin (H&E) for two pathologists to independently assess tumour cell and necrotic content. Tumour cell content (TC) in each specimen was scored as percentage of viable cells as seen on the H&E slide, where necrotic content (NC) was recorded as a percentage of the whole slide section. Statistics were calculated using SPSS v21 software. Tumour specimens screened for eligibility to The Cancer Genome Atlas sequencing project are presented here.Results
Tumours from 62 AC and 104 SCC subjects were scored (specimen characteristics in Table 1). Scoring between the two pathologists was highly correlated, with a high intraclass reliability (0.94 and 0.96 for TC and NC respectively).Table 1: Clinical and Pathological Characteristics of Specimens
TC varied from 0-~90% for both subtypes. Comparing AC and SCC, the median TC was higher in AC than SCC (35% vs 30% respectively, p<0.05). NC varied from 0-~100%, but was generally low. The median NC was statistically significantly different between AC and SCC (0% and 6% respectively, p<0.001). TC was weakly correlated with NC (Spearman Rank r = 0.32, p<0.01). There were no clinically important correlations between smoking pack years, gender or age with TC and NC of specimens.AC SCC Number of Specimens 384 609 Number of Males/Females 36/26 84/20 Median Specimens per Subject 4 4 Range of Specimens per Subject 1-25 1-27 Median TC 35% 30% Range of TC 0-88% 0-90% Median NC 0% 6% Range of NC 0-90% 0-100% Median Age 62 yrs 68 yrs Range of Age 45-85 yrs 46-91 yrs Median Smoking Pack Years 40 56 Range of Smoking Pack Years 0-115 0-158 Conclusion
Lung AC and SCC specimens are heterogeneous in terms of TC and NC. Therefore, only a small proportion of resected lung cancer specimens meet the criteria required for massively parallel sequencing projects that require high quality tumour DNA and RNA (ie low NC) and relatively low stromal contamination (ie high TC).