Virtual Library

Start Your Search

E. Thunnissen



Author of

  • +

    MO10 - Molecular Pathology II (ID 127)

    • Event: WCLC 2013
    • Type: Mini Oral Abstract Session
    • Track: Pathology
    • Presentations: 1
    • +

      MO10.07 - ALK immunohistochemistry and fluorescence in-situ hybridization in Lung adenocarcinomas from the ETOP Lungscape tumour cohort (ID 2267)

      16:50 - 16:55  |  Author(s): E. Thunnissen

      • Abstract
      • Presentation
      • Slides

      Background
      The European Thoracic Oncology Platform LungScape database contains 2614 cases of primary resected lung carcinoma from 16 centres with patient demographics, pathological tumour data and detailed clinical follow-up. A total of 1281 cases of adenocarcinoma with >2 years clinical follow-up were selected for analysis of ALK status by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Test positive cases were matched, in order of importance at ratio 1:2, by stage, gender, smoking status, study centre, year of surgery and age with test negative cases -both for IHC and for FISH testing.

      Methods
      Testing was performed in all centres using the same protocol (IHC: Novocastra 5A4 clone antibody at 1:10 dilution, Novolink detection system. FISH: Abbott Vysis ALK break-apart probe). Each centre passed an external QA test using unknown cases in a tissue microarray before conducting the LungScape tumour testing. IHC was scored according to three intensity scores (1+, 2+, 3+) using ‘objective’ methodology previously described [1]. Maximum staining intensity was recorded. Any IHC staining was defined as IHC positive result. FISH preparations were assessed according to the Vysis protocol on all 82 IHCpositive cases plus their 164 IHCnegative matches.

      Results

      IHC cases, n=1281 FISH positive(264 tested)
      IHC negative 1199 (93.6%) 0 (0.0% of 164 controls) FISH specificity: 100%
      IHC 1+ 43 (3.35%) 2 (4.6% of IHC 1+)
      IHC 2+ 16 (1.25%) 6 (37.5% of IHC 2+)
      IHC 3+ 23 (1.8%) 20 (87% of IHC 3+)
      IHC any positive 82 (6.4%) 28 (34.1% of IHC+) FISH sensitivity: 34.1%
      FISH sensitivity was 87% for IHC 3+. IHCpositive/FISHnegative cases (n=54) were mostly IHC 1+ (75.9%), sometimes IHC 2+ (18.5%) and rarely IHC 3+ (5.5%). The frequency of never smokers was higher in the ALK IHCpositive group (29.3%) versus IHCnegative group (18.3%) {p=0.011}. Age, gender and tumour stage did not differ between IHC groups. The hazard of an event for IHCpositive cases decreases by 32% in relapse-free survival {RFS; p=0.03} and by 38% in either time-to-relapse {TTR; p=0.02} or overall survival {OS; p=0.016}. Multivariate models -adjusted for patient and tumour characteristics- indicated that IHC-ALK was a significant predictor for all three time-to-event outcomes (RFS, TTR, OS). In stratified Cox analysis, significantly higher OS was retained in the IHCpositive (HR=0.59, p=0.04) and FISHpositive (HR=0.34, p=0.03) cases in the matched cohorts, while conditional logistic regression yielded non-significant associations with 3-year survival status.

      Conclusion
      In this large cohort of surgically resected primary lung adenocarcinoma: ALK IHC positivity was 6.4%. IHC 3+ staining (prevalence 1.8%) showed 87% probability of ALK FISH positivity ALK IHC positivity was higher in never smokers and related to better clinical outcome ALK testing can be reliably implemented across multiple laboratories {1} Ruschoff et al. Virchows Arch. 2010;457(299-307).

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.06 - Poster Session 1 - Prognostic and Predictive Biomarkers (ID 161)

    • Event: WCLC 2013
    • Type: Poster Session
    • Track: Biology
    • Presentations: 2
    • +

      P1.06-015 - EGFR mutated patients: different pattern and outcome of metastatic bone disease and brain metastases? (ID 1596)

      09:30 - 09:30  |  Author(s): E. Thunnissen

      • Abstract

      Background
      Bone and brain are frequent and problematic sites of metastasis in metastatic non-small cell lung cancer (mNSCLC). Conflicting studies exist whether patients with EGFR mutations develop brain metastases (BM) more often or have a longer survival after diagnosis of mNSCLC than EGFR/KRAS wild type (WT) or KRAS+ patients. For metastatic bone disease (MBD) this is not known. In this retrospective matched control study we compared in EGFR+, KRAS+ and WT patients time from mNSCLC to development of MBD/BM, skeletal related events (SREs) and subsequent survival.

      Methods
      In this retrospective case-control study all EGFR+ patients diagnosed at two molecular pathology departments were selected (VUMC 01-11-2004 to 01-01-2012, MUMC 01-10-2008 to 01-08-2012). For every EGFR+ patient a consecutive KRAS+ and WT mNSCLC patient was selected. Patients with another malignancy within 2 years of mNSCLC diagnosis or no follow up were excluded. Data regarding age, gender, histology, performance score, treatment, MBD and BM diagnosis, SRE and subsequent survival were collected.

      Results
      222 patients were included: 73 EGFR+, 76 KRAS+ and 73 WT (table 1). Respectively 56.2%, 51.3% and 50.7% had MBD (p=0.768) of which respectively 41.5%, 25.6% and 40.5% were diagnosed during follow up (p=0.262). Time to MBD was (mean, [SD]) respectively 13.4 [±10.6], 20.7 [±17.8], 16.8 [±9.6] months (p=0.360). Post MBD survival was (median, [95% confidence interval (CI)]) 15.0 [11.0-19.0], 7.1 [1.3-12.8], 3.2 [0.0-8.3] months respectively (p=0.008). Time to 1[st] SRE was not significantly different (p=0.164). Respectively 28.8%, 39.5% and 34.2% had BM (p=0.444) of which 76.2%, 60.0% and 48.0% were diagnosed during follow up (p=0.148). Mean time to BM was 20.3 [±11.7], 10.8 [±9.3], 14.3 [±10.8] months respectively (EGFR+-KRAS+ p=0.013, EGFR+-WT p=0.176). Post BM survival was 11.0 [2.2-19.8], 6.9 [0-14.1], 12.5 [5.6-19.5] months respectively (p=0.969). Results did not change significantly when patients with only best supportive care were excluded nor when in the EGFR+ group only exon 19/21 patients were included.

      table: patient characteristics and results bone and brain metastasis
      Characteristics EGFR+ N = 73 KRAS+ N = 76 Wildtype N = 73 p-value
      Female N (%) 51 (72.6) 44 (57.9) 29 (39.7) 0.001
      Mean age, years (range) 59.6 (29.3-90.7)
      60.6 (35.1-83.3)
      62.5 (39.6– 81.8) 0.228
      Never smoker N (%) 29 (45.3) 2 (2.7) 10 (15.2) <0.001
      WHO PS 0-2 N (%) 63 (98.4) 72 (97.3) 60 (92.3) 0.270
      Adenoca N (%) 67 (91.8) 63 (84.0) 55 (76.4) 0.209
      1[st] line no treatment 1[st] line chemo 1[st] line EGFR-TKI 3 ( 4.1) 23 (31.5) 47 (64.4) 10 (13.2) 64 (84.2) 2 ( 2.6) 14 (19.2) 54 (74.0) 5 ( 6.8) 0.069 <0.001 <0.001
      MBD N (%) Yes - at diagnosis - during follow up No 41 (56.2) -24 (58.5) -17 (41.5) 32 (43.8) 39 (51.3) -29 (74.4) -10 (25.6) 37 (48.7) 37 (50.7) - 22 (59.5) - 15 (40.5) 36 (49.3) 0.768 0.262
      SRE+ N (%) 22 (53.7) 23 (59.0) 21 (55.3) 0.887
      BM N (%) Yes -at diagnosis -during follow up No 21 (28.8) - 5 (23.8) -16 (76.2) 52 (72.2) 30 (39.5) -12 (40.0) -18 (60.0) 46 (60.5) 25 (34.2) - 13 (52.0) - 12 (48.0) 48 (65.8) 0.444 0.148

      Conclusion
      Incidence of MBD or BM was not different between EGFR+, KRAS+ and WT patients. Time from diagnosis of mNSCLC to MBD, 1[st] SRE or post-BM survival did not differ. However, survival after MBD was significantly longer in EGFR+ patients. This stresses the impact of bone management in these patients and probably warrant more intense screening for MBD. In EGFR+ patients BM remain a serious event with short survival. This should stimulate investigators to search for BM specific treatments in order to prolong survival post BM in EGFR+ patients.

    • +

      P1.06-021 - Validation of DNA Hypermethylation Analysis in Sputum for the Diagnosis of Lung Cancer (ID 1774)

      09:30 - 09:30  |  Author(s): E. Thunnissen

      • Abstract

      Background
      Lung cancer has the highest mortality of all cancers worldwide with a 5 year survival rate of <15%. The prognosis improves dramatically when the disease is detected at an early stage, and when curative treatment is possible. Current (low dose CT) screening and diagnostic procedures are suboptimal with low specificity. Thus, novel detection methods for lung cancer as stand alone or in combination with other methods are needed. DNA hypermethylation of biomarkers in sputum have shown to distinguish lung cancer cases from cancer-free controls. The aim of the present study was to validate the usage of DNA hypermethylation of biomarkers in sputum samples of lung cancer patients and controls for lung cancer diagnosis, in comparison with sputum cytology.

      Methods
      We prospectively collected sputum of lung cancer patients and controls during 3-9 days in the Amsterdam and Nieuwegein area, The Netherlands. From this sputum bank, a learning set (n=80 lung cancer patients, n=91 controls) and validation set (n=173 lung cancer patients, n=164 controls) were randomly composed. DNA promoter hypermethylation of the following biomarkers was assessed by means of quantitative methylation specific PCR: RASSF1A, APC, cytoglobin, 3OST2, PRDM14, FAM19A4 and PHACTR3. Cut-off values for positive hypermethylation were calculated using Youden’s index. Sputum cytology analysis was performed for all sputum samples. McNemar’s test was used to compare the difference between sensitivity of hypermethylation and sputum cytology for lung cancer diagnosis. A two-sided p-value <0.05 was considered significant.

      Results
      RASSF1A was best able to distinguish cases from controls, with sensitivity of 37-41% and specificity of 91-97% in both learning and validation sets. In multivariate analysis, a panel of RASSF1A, 3OST2 and PRDM14 showed highest sensitivity of 82% [95% confidence interval (CI): 76 – 88%] with a specificity of 68% [95% CI: 61 – 74%] in the learning set, with consistent results in the validation set. Molecular analysis was superior (P<0.001) over sputum cytology (sensitivity of 15%). The sensitivity of the biomarker panel did not improve when it was combined with sputum cytology. There was no association observed between DNA hypermethylation and clinical parameters such as age, smoking status, tumor stage, and histology.

      Conclusion
      This study validates hypermethylation analysis in sputum for the diagnosis of lung cancer. RASSF1A hypermethylation showed high specificity and thereby can have an important role in lung cancer diagnosis in symptomatic patients. A panel of biomarkers RASSF1A, 3OST2 and PRDM14 showed high sensitivity, but relatively low specificity.

  • +

    P2.18 - Poster Session 2 - Pathology (ID 176)

    • Event: WCLC 2013
    • Type: Poster Session
    • Track: Pathology
    • Presentations: 1
    • +

      P2.18-022 - <strong>Do <i>EGFR</i>- and <i>KRAS</i>-mutations occur in squamous cell lung carcinomas?</strong> (ID 3398)

      09:30 - 09:30  |  Author(s): E. Thunnissen

      • Abstract

      Background
      Adenocarcinoma (ADC) of the lungs may harbor EGFR- and KRAS-mutations, which are relevant for treatment decisions. Approximately 35% of non-small cell lung cancer (NSCLC) biopsies are diagnosed as not-otherwise-specified (NOS).To improve segregation between ADC and squamous cell carcinoma (SqCC), the classification of lung cancer was updated in 2011, adding immunohistochemistry (IHC) for p63 and TTF-1 to the diagnostic algorithm. The aim of our study was to investigate the hypothesis, that additional IHC reliably delineates lung cancer harboring EGFR- and KRAS-mutations.

      Methods
      From an institutional lung cancer database of specimens routinely analyzed for the presence of EGFR- or KRAS-mutations (n=816), cases harboring a mutation were selected (n=343) and corresponding original histological diagnoses and IHC for TTF-1, p63 and PAS-D were collected. Cases with a pattern compatible with SqCC were histologically reassessed.

      Results
      From the 343 cases 25% were resection specimen, 70% biopsy and 5% cytology specimens. 69% of cases had a KRAS-mutation and 31% an EGFR-mutation. IHC-data were conclusive in 89%. The combination of positive TTF-1 and/or mucin stain and a negative p63 stain, favoring ADC, was found in 264 cases (77%). Six (1.7%) specimens were positive for p63 only, favoring SqCC.

      Conclusion
      The current 2011 classification of lung tumors, based on histology and immunohistochemistry for TTF-1, p63 and mucin, segregates specimens of ADC and SqCC sufficiently well. Our study results support the use of IHC in the diagnosis of lung cancer.

  • +

    P3.11 - Poster Session 3 - NSCLC Novel Therapies (ID 211)

    • Event: WCLC 2013
    • Type: Poster Session
    • Track: Medical Oncology
    • Presentations: 1
    • +

      P3.11-037 - A phase II study of sorafenib and metformin in patients with stage IV non-small cell lung cancer (NSCLC) with a KRAS mutation (ID 2701)

      09:30 - 09:30  |  Author(s): E. Thunnissen

      • Abstract

      Background
      Previously we reported a phase II study of sorafenib, a multi tyrosine kinase inhibitor, in advanced NSCLC patients with a KRAS mutation [1]. While sorafenib was found active in this group of patients, progression free survival (PFS) and overall survival (OS) were disappointing. Concurrent inhibition of multiple pathways may improve treatment outcome. Metformin is a save and well known antidiabetic drug. It has been described that metformin has inhibitory effects against mTOR, downstream of PI3K. An in vitro study of our group has shown synergistic effects of sorafenib and metformin which provided the rationale for this study [2]. In a post hoc analysis of the previous study, metformin users appeared to be among the longest survivors.

      Methods
      Patients with advanced NSCLC with a KRAS mutation, pretreated with platinum containing chemotherapy were included. Other inclusion criteria were: ECOG performance score (PS) 0-1, adequate organ reserve, creatinine clearance >60 ml/min and provided written informed consent according to local IRB regulations. A tumor biopsy was mandatory to confirm the presence of a KRAS mutation, prior to start of treatment. Treatment consisted of sorafenib 400 mg BID and metformin 1000 mg BID until disease progression or unacceptable toxicity. Dose reductions and discontinuations were specified per protocol in the face of CTC toxicities grade 3 and 4. Primary endpoint: disease control rate (DCR) at 6 weeks according to RECIST version 1.1. Secondary endpoints: duration of response, progression free survival (PFS), overall survival and treatment related toxicities. A 2-stage design was implemented (Simon's optimal design; p0=50%, p1=70%, alpha=0.05, beta=0.20) for a total of 45 evaluable patients.

      Results
      Fifty-five patients were included between 1[st] of July 2012 and 1[st] of June 2013. Median age was 60 (range 34-77) years, 28 female (51 %), ECOG PS 0/1/2 16/32/1, all patients had stage IV disease. Of 47 patients disease evaluation after 6 weeks was available (Fig. 1). Two patients had a partial response, 23 stable disease and 22 patients had progressive disease. DCR was 53%. Results of secondary endpoints will be available at time of the conference.

      Conclusion
      This preliminary analysis suggests that the addition of metformin did not improve DCR, compared to previous reported results of sorafenib monotherapy in pretreated stage IV NSCLC patients with a KRAS mutation. [1] Dingemans AM et al. Clin Cancer Res. 2013 Feb 1;19(3):743-51 [2] Groenendijk FH et al. EJC. 2012 Nov; 48 (suppl. 6): p 48 Figure 1

  • +

    P3.21 - Poster Session 3 - Diagnosis and Staging (ID 171)

    • Event: WCLC 2013
    • Type: Poster Session
    • Track: Prevention & Epidemiology
    • Presentations: 1
    • +

      P3.21-007 - <em>EGFR</em> mutation analysis in sputum of lung cancer patients: a multicenter multitechnique study (ID 1782)

      09:30 - 09:30  |  Author(s): E. Thunnissen

      • Abstract

      Background
      Mutations in the epidermal growth factor receptor (EGFR) gene have been identified in lung adenocarcinomas and are associated with a high response to EGFR tyrosine kinase inhibitors. EGFR mutations can be detected in tumour tissue, cytology specimens and blood from lung cancer patients. Thus far, EGFR mutation analysis has not been systematically demonstrated for sputum samples. The aim of the present study was to determine whether EGFR mutation analysis is feasible on sputum samples, employing different assays in a multicenter study.

      Methods
      Sputum samples were collected from 10 lung cancer patients with confirmed EGFR mutation in their tumour tissue, 10 lung cancer patients without evidence of an EGFR mutation, and 10 patients with chronic obstructive pulmonary disease (COPD). DNA was isolated from the sputum and used for mutation analysis by Cycleave PCR, COLD-PCR, PangaeaBiotech SL technology (PST), and High Resolution Melting, respectively. Targeted resequencing (TruSeq Amplicon Cancer Panel) and droplet digital PCR were additionally performed on the 10 samples with EGFR mutation.

      Results
      Dependent on the assay, EGFR mutations could be detected in 30-50% of the sputum samples of patients with EGFR mutations (Table). The different techniques revealed consistent results, with slightly higher sensitivity for PST. Neither the lung cancer patients without EGFR mutation nor the COPD controls tested positive for EGFR mutations in their sputum samples, indicating high clinical specificity of all assays.

      Subject Gender Age (years) Tumour stage EGFR mutation status of tumour tissue[1] EGFR mutation analysis on sputum specimens[2]
      Cycleave PCR COLD-PCR PST[3] HRM-sequencing Cytology[4]
      A F 72 IV Del E746-A750 0 0 0 0 0
      B M 66 I Del E746-A750 0 2 0 0 0
      C[6] F 78 IV Del E746-A750 1 1 1 1 2
      D F 46 III Del E746-A750 0 0 1 0 0
      E[6] M 54 IV Del E746-A750 1 1 1 1 0
      F F 49 III Del E746-A750 & c.2369C>T [p.T790M] 0 0 0 0 0
      G F 54 IV Del E746-A750 & c.2369C>T [p.T790M] 0 0 1[5] 0 1
      H F 73 IV c.2753T>G [p.L858R] 0 0 0 0 0
      I F 61 IV c.2753T>G [p.L858R] 0 0 0 0 0
      J[6] M 60 IV Del E746-A750 1 1 1 1 2
      [1 ]del E746-A750= deletion exon 19 [2] mutation identified: 0=no, 1=yes, 2=dubious [3] exclusively del19 and L858R were assessed [4] tumour cells: 0=no, 1=yes, 2=in related sample of same patient [5 ]only del19 detected [6 ]TSACP and ddPCR both tested EGFR mutation (del19) positive.

      Conclusion
      EGFR mutations can be detected in sputum samples from patients with EGFR-mutated non-small cell lung cancer, which may replace biopsy procedure for some patients.

  • +

    PL03 - Presidential Symposium Including Top Rated Abstracts (ID 85)

    • Event: WCLC 2013
    • Type: Plenary Session
    • Track:
    • Presentations: 1
    • +

      PL03.01 - Lung cancer probability in subjects with CT-detected pulmonary nodules (ID 1578)

      08:15 - 08:27  |  Author(s): E. Thunnissen

      • Abstract
      • Slides

      Background
      The main challenge in computed tomography (CT) screening for lung cancer is the high prevalence of pulmonary nodules and the relatively low incidence of lung cancer. Thresholds for nodule size and growth rate, which determine which nodules require additional diagnostic procedures, should be based on the lung cancer probability of the individual.

      Methods
      Diameter, volume and volume-doubling time (VDT) of 9,681 non-calcified nodules detected by CT screening in 7,155 subjects were used to quantify lung cancer probability. Complete coverage on all lung cancer diagnoses was obtained by linkages with the national cancer registry. The nodule management algorithm recommended by the ACCP was evaluated and an improved algorithm, based on lung cancer probability, was proposed.

      Results
      Lung cancer probability was low in subjects with a nodule volume <100mm³ (≤0.7%) or maximum transverse diameter <5mm (≤0.6%) Moreover, probability in these subjects was not significantly different from that in subjects without nodules (0.4%). Lung cancer probability was 0.9-5.8% for nodules with a volume 100-300mm³ or a diameter 5-10mm; the VDT further stratified the probability: 0.0-0.9% for VDTs>600days, 4.0% for VDTs 400-600days and 6.7-25.0% for VDTs<400days. Lung cancer probability was high for participants with nodule volumes ≥300mm³ (8.9-26.1%) or diameters ≥10mm (11.1-26.2%), even with long VDTs. Finally, raising the thresholds for nodule size recommended by the ACCP for an indeterminate result from 4mm to 5mm and for a positive result from 8mm to 10mm, would yield fewer follow-up CT examinations (from 29.8% to 22.2%) and fewer additional diagnostic procedures (from 8.9% to 5.3%) while maintaining the sensitivity at 94.2%.

      Conclusion
      Small nodules (volume <100mm³ or diameter <5mm) are not predictive for lung cancer. Immediate diagnostic evaluation is necessary for subjects with large nodules (volume ≥300mm³ or diameter ≥10mm) and only for subjects with nodules of intermediate size is VDT assessment advocated.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.