Virtual Library
Start Your Search
V. Ludovini
Author of
-
+
MO15 - Novel Genes and Pathways (ID 89)
- Event: WCLC 2013
- Type: Mini Oral Abstract Session
- Track: Biology
- Presentations: 1
- Moderators:Y. Ohe, G. Reid
- Coordinates: 10/29/2013, 16:15 - 17:45, Parkside Ballroom A, Level 1
-
+
MO15.01 - Pathway activation mapping of KRAS wild type and mutated adenocarcinomas of the lung: new implications for patient stratification for MAP kinase pathway inhibition (ID 2705)
16:15 - 16:20 | Author(s): V. Ludovini
- Abstract
- Presentation
Background
KRAS proto-oncogene is one of the most frequent mutated genes in Non-Small Cell Lung Cancer (NSCLC) with greater incidence among adenocarcinomas (AD). While the clinical importance of KRAS mutation as a negative predictor for anti-EGFR therapy is not clearly understood in NSCLCs, selection of targeted therapies for KRAS mutated (MUT) patients has often focused on the inhibition of its direct downstream effectors. The aim of this study was to explore the impact of the KRAS status on the cellular signaling network of ADs of the lung harboring different KRAS mutations with a focus on ERK signaling architecture.Methods
A total of 58 AD samples were collected from chemo-naïve patients at the H. Lee Moffitt Cancer Center & Research Institute (Tampa, FL) and at S. Maria della Misericordia Hospital (Perugia, Italy). Twenty-four tumors were KRAS wild type (WT) and 34 were KRAS MUT (G12C n=18, G12V n=9, G13D n=3 and G12D n=4, respectively). All samples were subjected to laser capture microdissection and reverse phase protein microarray to quantitatively evaluate the activation status of the MAP Kinase signaling network.Results
Statistical analysis of signaling protein activation based on KRAS status revealed an overall increase in activation level of the MAPK signaling network in the KRAS MUT tumors compared to tumors expressing KRAS WT: ERK 1/2 (T202/Y204), Elk-1 (S383), p90RSK (S380), Smad2 (S245/250/255) and p70S6K (p<0.01; p<0.01; p<0.01, p=0.04 and p<0.01 respectively). Nevertheless, 6 KRAS WT patients (25%) showed activation of ERK greater than the median of the entire population and an overall MAPK signaling activation comparable to tumors harboring KRAS MUT. Eleven of the KRAS MUT tumors (32%) had ERK activation lower than the median of the population as a whole. Interestingly a high activation level of Estrogen Receptor alpha (ERα) (S118) was detected in the KRAS MUT tumors compared to the KRAS WT one (p=0.02). Moreover the nonparametric test performed to establish the correlation of activated ERK 1/2, Raf, B-Raf, C-Raf and Mek 1/2 with the expression/activation levels of the 152 endpoints analyzed in this study, revealed the activation of distinct pathways in the KRAS MUT tumors when compared to KRAS WT tumors. Significant correlations were detected with Akt, KRAS, their downstream substrates and with several receptor tyrosine kinases (p<0.0003).Conclusion
Our results suggest that MAPK signaling activation was clearly observed in KRAS MUT tumors. However, the heterogeneity in the activation level of MAPK downstream substrates within KRAS MUT and WT tumors suggests that selection of patients for MAPK targeting might benefit from the evaluation not only of the mutation itself, but also from a direct analysis of the MAPK protein network architecture. In particular the role played by ERα in KRAS MUT tumors deserves further investigations as a possible novel therapeutic target in KRAS MUT adenocarcinomas of the lung.Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.
-
+
P1.02 - Poster Session 1 - Novel Cancer Genes and Pathways (ID 144)
- Event: WCLC 2013
- Type: Poster Session
- Track: Biology
- Presentations: 1
- Moderators:
- Coordinates: 10/28/2013, 09:30 - 16:30, Exhibit Hall, Ground Level
-
+
P1.02-006 - Identification of targetable driver mutations in molecularly selected never smoker lung adenocarcinomas (ID 2970)
09:30 - 09:30 | Author(s): V. Ludovini
- Abstract
Background
Approximately 25% of lung cancers occur in lifelong never smokers. Although no dominant risk factor has been identified yet, the discover of molecular drivers potentially targetable with biological agents, makes lung cancer in never smokers a unique disease, candidate for a personalized therapy. Through the FISH test, we performed a screening for ALK, ROS1, and RET rearrangements, in a highly selected population of lung adenocarcinoma never smoker patients, previously demonstrated to be wild-type for EGFR and K-RAS mutations.Methods
We collected archived histological material of 28 EGFR and K-RAS wild-type patients (pts), from a 200 never-smoker advanced lung adenocarcinomas database, to be analyzed for the presence of rearrangements in ALK, ROS1 and RET genes. All pts were treated at the Division of Medical Oncology of the S Maria della Misericordia Hospital in Perugia from October 2003 to February 2013. 20 specimens were included in a tissue microarray (TMA) analysis, whereas 8 were screened in separate subset, due to the scarce samples. FISH test was performed using a combination of commercial reagents and custom designed probes. Median overall survival (OS) of mutated pts compared to the pan-negative ones, was evaluated by Cox multivariate analysis.Results
Clinicopathological characteristics: among the 28 patients, 27 were never smokers and 1 former light smoker, with a good performance status; 20 (72%) presented with a metastatic disease at diagnosis, 8 (28%) were locally advanced; median age was 56 years-old, with a predominance of female sex (18/28, 64%). All cases were invasive adenocarcinomas and classified into 18 (64%) solid predominant type, 1 (3.5%) mixed acinar/lepidic pattern, 1 (3.5%) papillary, no predominant subtype for 8 (28%) patients, because of unsufficient histological material available. Of the 28 never smoker cases, we identified 7 gene fusions (25%), including 2 pts ALK+ (7.1%), 3 pts ROS1+ (10.7%) and 2 RET+ cases (7.1%), one compatible with KIF5B:RET and other with CCDC6:RET fusion. Median OS for the entire cohort was 24.5 months (mo), 61.2 mo for mutated pts (any rearrangement) vs 24.1 mo for not-mutated, respectively (P = .292).Conclusion
Molecularly selected never smoker lung adenorcinomas associates with a high incidence of driver genes mutations and further investigations to confirm our frequencies in larger cohorts are needed. In line with literature data, our findings suggest a different survival outcome among genotypes, and identification of specific subsets in this special population can lead to successful treatment with target therapies.
-
+
P1.06 - Poster Session 1 - Prognostic and Predictive Biomarkers (ID 161)
- Event: WCLC 2013
- Type: Poster Session
- Track: Biology
- Presentations: 1
- Moderators:
- Coordinates: 10/28/2013, 09:30 - 16:30, Exhibit Hall, Ground Level
-
+
P1.06-041 - Prognostic impact of cytoskeleton regulatory protein human Mena (hMena) isoforms in resected, node-negative, non-small-cell lung cancer: validation of a clinic-molecular prognostic model. (ID 2609)
09:30 - 09:30 | Author(s): V. Ludovini
- Abstract
Background
Human Mena and the isoform hMena[+11a] are cytoskeleton regulatory proteins involved in adhesion, motility, regulated in the epithelio-mesenchimal transition. Here, we investigated their potential prognostic value in node-negative non-small-cell lung cancer (NSCLC) patients.Methods
Pan-hMena, hMena[+11a], E-cadherin, vimentin, ER-beta, EGFR, HER-2, pAKT, detected immunohystochemically on duplicate TMA and clinical factors (sex, age, histology, grading, T-size, number of resected nodes, RN) were correlated to 3-yr disease-free (DFS), cancer-specific (CSS), and overall survival (OS) using a Cox model. ROC analysis provided optimal cut-off values and model validation. A logistic equation including regression analysis coefficients was constructed to estimate individual patients’ probability (IPP) of relapse. Internal cross-validation (100 simulations with 80% of the dataset) and external validation was accomplished.Results
In a training set of 248 patients (median follow-up: 36 months, range 1-96), Pan-hMmena and hMena+11a were the only biological variables displaying significant correlation with outcome(s), confirmed by the cross-validation (replication rate: 78%, 83%), with a prognostic model accuracy of 61% (standard error 0.04, p=0.0001). Patients with high pan-hMENA expression had a non-significant trend towards a worse outcome, while patients with high hMena+11a expression had a significant and borderline significant advantage in DFS (p=0.03) and OS (p=0.056), respectively, and a non-significant trend towards a better CSS. Univariate and multivariate 3-yr median individual patient probabilities of recurrence were 70.9 (range 40.3-94.4) and 41.2 (range 13.6-86.5), respectively (data not shown). The subgroup of patients with High Pan-hMena/Low hMena11a relative expression fared significantly better than any of the other 3 groups (p≤0.002 for all outcomes). On the basis of the combination between this molecular hybrid variable and T-size and RN, a 3-class risk stratification model was generated; the derived 3-risk class survival model strikingly discriminated between patients at different risk of relapse, cancer-related death, and death for any cause, with a prognostic accuracy of 61% (standard error 0.03, p=0.01), according to ROC analysis. The 3-risk class survival model was externally validated in an independent dataset of 133 patients, and significantly discriminated between patients at Intermediate- and High-Risk of relapse and cancer-related death.Conclusion
The expression of the hMena and its isoform may represent a powerful prognostic factor in early NSCLC and usefully complements clinical parameters to accurately predict individual patient risk..
-
+
P2.06 - Poster Session 2 - Prognostic and Predictive Biomarkers (ID 165)
- Event: WCLC 2013
- Type: Poster Session
- Track: Biology
- Presentations: 1
- Moderators:
- Coordinates: 10/29/2013, 09:30 - 16:30, Exhibit Hall, Ground Level
-
+
P2.06-028 - ERCC1 mRNA expression and KRAS mutation status in EGFR wild type (WT) advanced non-small cell lung cancer (NSCLC) patients (ID 2405)
09:30 - 09:30 | Author(s): V. Ludovini
- Abstract
Background
In a previous report of EGFR WT advanced NSCLC patients treated with first-line platinum-based chemotherapy we observed a worse clinical outcome for KRAS-mutants compared with KRAS WT patients (Metro et al. ESMO 2012). Here, we assessed whether this phenomenon could be due to different levels of ERCC1 expression.Methods
From a prospectively maintained database of EGFR WT advanced NSCLC patients diagnosed at a single Institution between January 2006 and November 2012, we identified the individuals who had a known KRAS mutation status and tissue available for assessment of ERCC1 mRNA expression. Total RNA was isolated from paraffin-embedded tumor specimens using RNeasy Mini kit and automatically purified by QiaCube instrument (Qiagen). Quantification of mRNA expression levels of ERCC1 was analyzed by real-time one-step RT-PCR using QuantiFast technology by RotorGeneQ instrument (Qiagen), and the results were compared considering β-actin as the internal reference gene.Results
One hundred and eleven patients were evaluable, 60 of which were KRAS-mutants. Among KRAS-mutants, the rate of codon 12/13/61 mutations were 80%/13.3%/6.7% respectively. Baseline patients characteristics were as follows: median age was 62 years (35-84), 36.9% were male, 63.9% were stage IV, 78.3% were PS 0 or 1, 87.3% were ever-smokers, and 71.1% had received a first-line platinum-based chemotherapy. More ever-smokers were present in the KRAS-mutant subgroup compared with WTs (90% versus 76.5%, respectively, P = 0.08). ERCC1 average scores ranged from 0.1 to 26.7, the values being not normally distributed (Kolmogorov-Smirnov test, P<0.0001). Median and mean overall ERCC1 values for all patients were 1.3 and 2.2 [standard deviation (SD) 3.4], respectively. There was no statistically significant difference in terms of ERCC1 median values betwen KRAS-mutants and KRAS WTs (1.4 vs. 1.3, respectively, P = 0.27). Nevertheless, mean ERCC1 expression levels were found to be significantly higher in KRAS-mutants compared with KRAS WTs [2.9 (SD 4.5) vs. 1.4 (SD 0.8), respectively, P = 0.02]. This finding was due to 7 KRAS-mutant patients (ERCC1 high) coming out with ERCC1 levels higher than 5.0, thus notably incresing mean ERCC1 values. In the group of patients treated with first-line platinum-based chemotherapy (n = 79), median progression-free survival was 1.9 months for KRAS-mutant, ERCC1 high patients (n = 6), 5.1 months for KRAS-mutant, ERCC1 low patients (n = 38), and 7.1 months for KRAS WT patients (n = 35) (P = 0.003).Conclusion
KRAS-mutant NSCLCs may express higher levels of ERCC1 compared with KRAS WTs, which could translate into poor sensitivity to first-line platinum-based chemotherapy. Combination strategies of platinum-based chemotherapy plus KRAS-targeting agents may represent an appealing upfront strategy for KRAS-mutants advanced NSCLCs, particularly in presence of concomitant expression of high ERCC1 levels.