Virtual Library
Start Your Search
L. Girard
Author of
-
+
CALC - Chinese Alliance Against Lung Cancer Session (ID 79)
- Event: WCLC 2013
- Type: Other Sessions
- Track: Other Topics
- Presentations: 1
- Moderators:C. Bai, Y. Wu, D.C. Lam
- Coordinates: 10/27/2013, 07:30 - 12:00, Parkside Auditorium, Level 1
-
+
CALC.07 - Molecular Signatures for the Accurate Classification of NSCLC and Neuroendocrine Tumors and Cell Lines (ID 3874)
10:05 - 10:25 | Author(s): L. Girard
- Abstract
Abstract
Until recently the oncologist was only interested to know whether a lung cancer was SCLC or NSCLC. However, recent changes, particularly during this century, require more precise classification of lung cancer, and, in some cases, for subclassification [1]. The different classes of lung cancer respond differently to conventional therapy and to precision medicine. The patterns of driver mutations are highly tumor type dependent, with very little overlap between classes. Thus mutation testing depends of accurate classification. Other reasons for accurate classification include: 1) Adenocarcinoma histology is a strong predictor of response to pemetrexed therapy in patients with advanced disease; and 2) Serious hemorrhagic complications after bevacizumab therapy have been reported in patients with squamous histologies. With the development and application of newer agents for precision medicine, the need for accurate classification will only increase. Complicating the increased need for accurate classification is the fact that currently 70% of lung cancers are diagnosed from small biopsies or cytological samples. Thus more accurate diagnoses are demanded from smaller amounts of materials [1, 2]. A further complication is that large international clinical trials often require that tumor materials be reserved for entry requirements or various tests. In routine pathology practice, immunostains are often used to classify poorly differentiated lung carcinomas. While many immunostains have been proposed, a simple algorithm utilizing TTF1 and Napsin A for adenocarcinoma and p63 (or its isoform p40) and high molecular weight keratins have is effective [3]. However, even with excellent pathology practices, over 10% of cases will be incorrectly classified or be unclassified (undifferentiated large cell carcinoma or NSCLC-not other wise specified (NSCLC-NOS). Pathology practices and quality may vary from institution to institution or country to country. The SEER data on cancer incidence indicates that over 20% of lung cancer cases in the USA are not further classified. For these reasons we developed highly specific and sensitive RNA expression signatures as an adjunct test for routine pathological classification. The signatures not only classify the smaples, but provide a numeric scor ranging from 0-1.0, indicating the degree of differentiation. We utilized expression arrays from multiple public and private sources including The Tumor Cell Genome Atlas (TCGA), which used several platforms including Illumina, Affymetrix and RNA-Seq. For complete identification, four signatures had to be developed and validated and can be utilized independently or in combination. These signatures are: 1) Adenocarcinoma-squamous cell carcinoma discrimination, 2) lung specific neuroendocrine (NE)-non neuroendocrine lung cancer discrimination, 3) Non-malignant lung- lung carcinoma discrimination and 4) lung respiratory cell-lung carcinoma cell discrimination. The adenocarcinoma signature includesTTF1, the squamous cell carcinoma signature includes p63 and several high molecular weight keratins, and the NE cell signature includes chromgranin A, synaptophysin and dopa decarboxyase, adding credence to the signatures. These signatures have <10% discrepancy rates with expert pathology review and have helped n the correct classification of NSCLC, large cell and NSCLC-NOS carcinomas, NE lung tumors and lung cancer cell lines. John Minna and Alex Augustyn, in collaboration with us, have utilized their modification of the NE cell signature, and have identified two potential major clinical applications. These include identification of the full NE expression signature in a subset (5-10%) of NSCLC. While some of these may represent misclassified large cell neuroendocrine carcinomas, others appear to be typical adenocarcinomas. In addition, they have identified that BCL2 is one of the downstream targets of ASCL1, the driving force for NE differentiation in the lung, and that inhibition of BCL2 results in apoptosis of SCLC and NSCLC-NE tumors. Practical application of our signatures requires modification to a more practical platform such as Nanostring technology, and application to formalin fixed paraffin embedded small biopsies. These are currently in development. We are grateful to Drs. William Travis and Natasha Rehktman, members of the TCGA pathology panel and Ignacio Wistuba, John Minna and Alex Augustyn for their invaluable assistance. References 1. Gazdar AF. The evolving role of the pathologist in the management of lung cancer. Lung Cancer Management 2012;1(4):1-9. 2. Travis WD, Brambilla E, Noguchi M, et al. Diagnosis of Lung Cancer in Small Biopsies and Cytology: Implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society Classification. Arch Pathol Lab Med 2012. 3. Travis WD, Rekhtman N. Pathological diagnosis and classification of lung cancer in small biopsies and cytology: strategic management of tissue for molecular testing. Semin Respir Crit Care Med 2011;32(1):22-31.
-
+
O12 - Lung Cancer Biology II (ID 87)
- Event: WCLC 2013
- Type: Oral Abstract Session
- Track: Biology
- Presentations: 1
- Moderators:Y. Nakanishi, B. Solomon
- Coordinates: 10/29/2013, 10:30 - 12:00, Parkside 110 A+B, Level 1
-
+
O12.05 - Defining the role of ZEB1 in the pathogenesis of non-small cell lung cancer (NSCLC) using immortalized human bronchial epithelial cells (HBECs) (ID 1139)
11:15 - 11:25 | Author(s): L. Girard
- Abstract
- Presentation
Background
To study the role of common lung cancer mutations in transforming lung epithelial cells in an appropriate cellular context we used cdk4/hTERT-immortalized normal HBECs. We developed an isogenic series of HBECs by introducing genetic manipulations representing common lung cancer mutations (such as p53, KRAS[V12], cMYC, and LKB1). This defined in vitro system allows characterization of specific tumorigenic contributions as well as identification of acquired changes, likely representing tumor acquired vulnerabilities and novel therapeutic targets (Mol Cancer Res 2013). One acquired change observed with oncogenic transformation of HBECs is a spontaneous epithelial-to-mesenchymal transition (EMT), an important biologic process in cancer. This study sought to characterize the role of EMT in driving tumorigenesis in HBECs and, in turn, lung cancer to identify novel therapeutic targets.Methods
Genetic manipulations were introduced into cell lines using siRNA/shRNA or over-expression constructs. Tumorigenicity was measured using in vitro (anchorage-dependent and -independent colony formation, proliferation, migration and transwell Matrigel invasion assays) and in vivo (subcutaneous or intravenous injection into NOD/SCID mice) methods. Genome-wide mRNA expression data from five independent datasets was obtained either in-house using Illumina HumanHT-12v4 BeadChips or from publicly available databases.Results
Analysis of EMT-promoting transcription factors in our isogenic series of oncogenically-manipulated HBECs found ZEB1 expression highly correlated with mesenchymal-like HBECs. Functional studies confirmed ZEB1 was a significant driver of tumorigenic phenotypes in both oncogenic HBECs and human lung cancer cell lines where loss of ZEB1 resulted in decreased colony formation, migration and invasion in vitro and subcutaneous tumor growth and intravenous colonization in vivo. A set of ZEB1-associated genes was identified from analyzing five independent mRNA microarray datasets comprising both cell lines and lung adenocarcinomas. From this gene set we found ZEB1 directly represses ESRP1 by binding to its promoter, which leads to increased mesenchymal splicing of the ESRP1 target CD44. The mesenchymal isoform of CD44, CD44s, conferred a CD44[hi] flow cytometry profile which, in turn, could be used to select for a highly tumorigenic subpopulation in partially transformed HBECs. To identify candidate ZEB1-activated targets we screened ZEB1-upregulated genes in a siRNA invasion assay. Several genes including PMP22 and CD70 could phenocopy ZEB1 where siRNA-mediated loss of expression led to decreased invasiveness in multiple NSCLC cell lines. CD70 (also called TNFSF7, tumor necrosis factor ligand superfamily member 7) may represent a prime therapeutic target for anti-metastatic growth in lung cancer. The ligand for CD27, it is involved in immune regulation, upregulated in some cancers and is being studied as a potential target for antibody therapeutics. Importantly, an anti-CD70 monoclonal antibody inhibited invasion of NSCLC cell lines comparably to siCD70 and siZEB1.Conclusion
We demonstrate in vitro models of defined oncogenic HBEC transformation provide an invaluable tool to study lung cancer progression where EMT is an important mediator. ZEB1 is spontaneously expressed with malignant transformation of HBECs and is a significant driver of oncogenic progression in both HBECs and NSCLC cells. Identification of CD70 and PMP22 as downstream targets of ZEB1 may represent novel therapeutic targets for lung cancer.Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.
-
+
P1.01 - Poster Session 1 - Cancer Biology (ID 143)
- Event: WCLC 2013
- Type: Poster Session
- Track: Biology
- Presentations: 1
- Moderators:
- Coordinates: 10/28/2013, 09:30 - 16:30, Exhibit Hall, Ground Level
-
+
P1.01-002 - Clinicopathological and biological significance of epiregulin expression in non-small cell lung cancer (ID 755)
09:44 - 09:58 | Author(s): L. Girard
- Abstract
Background
KRAS mutations are one of the most common driver mutations in non-small cell lung cancer (NSCLC) and efficient therapeutic stratergies for oncogenic KRAS-driven NSCLC are urgently needed. We recently identified epiregulin (EREG) as one of several putative transcriptional targets of oncogenic KRAS signaling in KRAS-mutant NSCLC cells and immortalized bronchial epithelial cells expressing ectopic mutant KRAS. In the present study, we assessed clinicopathological and biological significance of EREG expression in NSCLC.Methods
Seventy-eight lung cancer cell lines (23 small cell lung cancers [SCLCs] and 35 NSCLCs), five noncancerous bronchial epithelial cell lines and 174 surgical specimens from NSCLC patients (136 adenocarcinomas and 38 squamous cell carcinomas) were used for EREG expression analysis by real-time RT-PCR methods. In vitro cell growth was evaluated by MTT assay, colony-formation assay in liquid culture and soft agar assay. Apoptosis was evaluated by the DNA fragment detection method and the annexin-V-fluorescein staining method. The Kaplan-Meier method was used for analysis of disease-free survival (DFS) and overall survival (OS) and log-rank test was used for survival differences. Cox proportional hazards model was used to identify independent prognostic factors for PFS and OS.Results
EREG is predominantly expressed in NSCLC lines harboring KRAS, BRAF or EGFR mutations whereas most SCLC lines lack EREG expression. Small interfering RNAs (siRNAs) targeting against these mutations resulted in down-regulation of EREG expression in NSCLC cells. EREG expression was significantly reduced by treatments with the inhibitors of MEK or ERK in EREG-overexpressing NSCLC cell lines, irrespective of mutation status of KRAS, BRAF and EGFR. EREG expression significantly correlated with KRAS copy number in KRAS-mutant NSCLC cell lines whereas EREG expression significantly correlated with EGFR copy number in NSCLC cell lines with wild-type KRAS/BRAF/EGFR. In the analysis of surgical specimens from NSCLC patients, EREG was predominantly expressed in lung adenocarcinomas. In a subgroup of adenocarcinomas, EREG expression was significantly higher in the tumors from elderly patients (≥70-year-old), males and smokers and was higher in the tumors with pleural involvement-, lymphatic permeation- or vascular invasion-positive. EREG was highly expressed in lung adenocarcinomas with KRAS mutation compared to those with EGFR mutation or wild-type EGFR/KRAS. Lung adenocarcinoma patients with high EREG expression had significantly shorter DFS and OS compared to those with low EREG expression. When the patients were divided into four groups according to EREG expression levels and KRAS mutation status, DFS and OS were significantly shorter in the patients with KRAS-mutant/EREG-high than those with wild-type KRAS/EREG-low. Cox regression analysis demonstrated that elevated EREG expression was an unfavorable prognostic factor. siRNA-mediated EREG silencing inhibited anchorage-dependent and -independent growth and induced apoptosis in KRAS-mutant and EREG-overexpressed lung adenocarcinoma cells.Conclusion
Our findings suggest that oncogenic KRAS-induced EREG overexpression contributes to an aggressive phenotype and unfavorable prognosis in lung adenocarcinoma patients, and EREG could be a promising therapeutic target in oncogenic KRAS-driven NSCLC.