Virtual Library

Start Your Search

P. Godwin



Author of

  • +

    P2.04 - Poster Session/ Biology, Pathology, and Molecular Testing (ID 234)

    • Event: WCLC 2015
    • Type: Poster
    • Track: Biology, Pathology, and Molecular Testing
    • Presentations: 1
    • +

      P2.04-102 - Targeting Inflammatory Mediators to Overcome Intrinsic and Acquired Cisplatin Resistance in Non-Small Cell Lung Cancer (ID 1314)

      09:30 - 09:30  |  Author(s): P. Godwin

      • Abstract
      • Slides

      Background:
      Cisplatin based doublet-chemotherapy is commonly used in non-small cell lung cancer (NSCLC) treatment with an initial objective response rate of 40-50%. However, intrinsic and acquired chemo-resistance constitutes a major clinical obstacle. The mechanisms of resistance have yet to be fully understood. We have previously demonstrated that NF-κB levels are elevated in cisplatin resistant cells (CisR) and that the use of an NF-κB inhibitor, DHMEQ, resulted in greater CisR cell death. The goal of this project is to elucidate the mechanistic links between NF-κB regulated pathways and the development of cisplatin resistant NSCLC.

      Methods:
      The expression of NF-κB mediators and immune regulators were assessed in an isogenic NSCLC cell line model of cisplatin resistance using qPCR arrays (252 genes). A number of targets were identified and validated using PCR. The effect of drug combinations (Cisplatin and DHMEQ) was also determined. Comet assays (DNA damage) were also performed to determine the effect of DHMEQ alone or in combination with irradiation (6 Gy).

      Results:
      Various chemokines and their receptors were elevated in cisplatin resistant (CisR) cells compared with cisplatin sensitive (PT). In addition, a number of key TLRs and regulators of the innate immune pathway were altered. DHMEQ enhanced cellular sensitivity to cisplatin in both PT and CisR cell lines (p<0.05). This drug also overcame the chemo-protective effect of a number of chemokines and enhanced irradiation induced DNA damage. An animal study will commence shortly using DHMEQ alone and in combination with cisplatin.

      Conclusion:
      Immune-modulators such as DHMEQ may be a novel viable option in addressing inflammatory mediated acquired and intrinsic NSCLC chemo-resistance. In addition, immune regulators identified in this project may provide innovative targets for immuno-oncology therapy.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.